Show commands:
Magma
magma: G := TransitiveGroup(21, 26);
Group invariants
Abstract group: | $C_7^2:(C_3\times S_3)$ | magma: IdentifyGroup(G);
| |
Order: | $882=2 \cdot 3^{2} \cdot 7^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,21,2,18,4,19)(3,15,6,20,5,16)(7,17)(8,12,14)(10,13,11)$, $(1,11,15)(2,10,16)(3,9,17)(4,8,18)(5,14,19)(6,13,20)(7,12,21)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: None
Low degree siblings
14T26, 21T25, 42T143, 42T144, 42T152, 42T153, 42T154, 42T155Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{7},1^{7}$ | $21$ | $2$ | $7$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,19)( 6,20)( 7,21)$ |
3A1 | $3^{7}$ | $14$ | $3$ | $14$ | $( 1,15, 8)( 2,17,11)( 3,19,14)( 4,21,10)( 5,16,13)( 6,18, 9)( 7,20,12)$ |
3A-1 | $3^{7}$ | $14$ | $3$ | $14$ | $( 1,20,13)( 2,17,11)( 3,21, 9)( 4,18,14)( 5,15,12)( 6,19,10)( 7,16, 8)$ |
3B1 | $3^{6},1^{3}$ | $49$ | $3$ | $12$ | $( 1, 7, 5)( 3, 4, 6)( 8,12,13)( 9,14,10)(15,20,16)(18,19,21)$ |
3B-1 | $3^{6},1^{3}$ | $49$ | $3$ | $12$ | $( 1, 5, 7)( 3, 6, 4)( 8,13,12)( 9,10,14)(15,16,20)(18,21,19)$ |
3C | $3^{7}$ | $98$ | $3$ | $14$ | $( 1,20,11)( 2,21,10)( 3,15, 9)( 4,16, 8)( 5,17,14)( 6,18,13)( 7,19,12)$ |
6A1 | $6^{2},3^{2},2,1$ | $147$ | $6$ | $15$ | $( 1,15, 5,17, 6,21)( 2,19, 7,18, 3,16)( 4,20)( 8,12,14)(10,13,11)$ |
6A-1 | $6^{2},3^{2},2,1$ | $147$ | $6$ | $15$ | $( 1,17, 6,20, 5,18)( 2,19, 3,21, 7,15)( 4,16)( 8,11,10)( 9,13,14)$ |
7A1 | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)(15,16,17,18,19,20,21)$ |
7A-1 | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,12, 9,13,10,14,11)(15,21,20,19,18,17,16)$ |
7B1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,10,12,14, 9,11,13)(15,20,18,16,21,19,17)$ |
7B-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,19,16,20,17,21,18)$ |
7C | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 8,12, 9,13,10,14,11)(15,19,16,20,17,21,18)$ |
14A1 | $14,7$ | $63$ | $14$ | $19$ | $( 1,18, 7,17, 6,16, 5,15, 4,21, 3,20, 2,19)( 8,14,13,12,11,10, 9)$ |
14A-1 | $14,7$ | $63$ | $14$ | $19$ | $( 1,19, 2,20, 3,21, 4,15, 5,16, 6,17, 7,18)( 8, 9,10,11,12,13,14)$ |
21A1 | $21$ | $42$ | $21$ | $20$ | $( 1,16,12, 5,17,10, 2,18, 8, 6,19,13, 3,20,11, 7,21, 9, 4,15,14)$ |
21A-1 | $21$ | $42$ | $21$ | $20$ | $( 1,19,11, 4,17,12, 7,15,13, 3,20,14, 6,18, 8, 2,16, 9, 5,21,10)$ |
21A2 | $21$ | $42$ | $21$ | $20$ | $( 1,15,10, 2,19, 8, 3,16,13, 4,20,11, 5,17, 9, 6,21,14, 7,18,12)$ |
21A-2 | $21$ | $42$ | $21$ | $20$ | $( 1,18,13, 6,21,14, 4,17, 8, 2,20, 9, 7,16,10, 5,19,11, 3,15,12)$ |
Malle's constant $a(G)$: $1/7$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C | 6A1 | 6A-1 | 7A1 | 7A-1 | 7B1 | 7B-1 | 7C | 14A1 | 14A-1 | 21A1 | 21A-1 | 21A2 | 21A-2 | ||
Size | 1 | 21 | 14 | 14 | 49 | 49 | 98 | 147 | 147 | 6 | 6 | 9 | 9 | 18 | 63 | 63 | 42 | 42 | 42 | 42 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C | 3B1 | 3B-1 | 7A1 | 7A-1 | 7B1 | 7B-1 | 7C | 7B1 | 7B-1 | 21A2 | 21A-2 | 21A1 | 21A-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 7A-1 | 7A1 | 7B-1 | 7B1 | 7C | 14A-1 | 14A1 | 7A1 | 7A-1 | 7A1 | 7A-1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 3A1 | 3A-1 | 3A-1 | 3A1 | |
Type | |||||||||||||||||||||
882.34.1a | R | ||||||||||||||||||||
882.34.1b | R | ||||||||||||||||||||
882.34.1c1 | C | ||||||||||||||||||||
882.34.1c2 | C | ||||||||||||||||||||
882.34.1d1 | C | ||||||||||||||||||||
882.34.1d2 | C | ||||||||||||||||||||
882.34.2a | R | ||||||||||||||||||||
882.34.2b1 | C | ||||||||||||||||||||
882.34.2b2 | C | ||||||||||||||||||||
882.34.6a1 | C | ||||||||||||||||||||
882.34.6a2 | C | ||||||||||||||||||||
882.34.6b1 | C | ||||||||||||||||||||
882.34.6b2 | C | ||||||||||||||||||||
882.34.6b3 | C | ||||||||||||||||||||
882.34.6b4 | C | ||||||||||||||||||||
882.34.9a1 | C | ||||||||||||||||||||
882.34.9a2 | C | ||||||||||||||||||||
882.34.9b1 | C | ||||||||||||||||||||
882.34.9b2 | C | ||||||||||||||||||||
882.34.18a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed