Show commands: Magma
Group invariants
Abstract group: | $C_7^2:C_3$ |
| |
Order: | $147=3 \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $21$ |
| |
Transitive number $t$: | $12$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $7$ |
| |
Generators: | $(1,17,14)(2,16,8)(3,15,9)(4,21,10)(5,20,11)(6,19,12)(7,18,13)$, $(1,20,10)(2,19,11)(3,18,12)(4,17,13)(5,16,14)(6,15,8)(7,21,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,10,19)( 2,11,18)( 3,12,17)( 4,13,16)( 5,14,15)( 6, 8,21)( 7, 9,20)$ |
3A-1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,19,10)( 2,18,11)( 3,17,12)( 4,16,13)( 5,15,14)( 6,21, 8)( 7,20, 9)$ |
7A1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
7A-1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,12, 9,13,10,14,11)(15,20,18,16,21,19,17)$ |
7B1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,11,14,10,13, 9,12)(15,16,17,18,19,20,21)$ |
7B-1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)$ |
7C1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,10,12,14, 9,11,13)(15,20,18,16,21,19,17)$ |
7C-1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,12, 9,13,10,14,11)(15,17,19,21,16,18,20)$ |
7C2 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,12, 9,13,10,14,11)(15,18,21,17,20,16,19)$ |
7C-2 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,11,14,10,13, 9,12)(15,21,20,19,18,17,16)$ |
7C3 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,14,13,12,11,10, 9)(15,16,17,18,19,20,21)$ |
7C-3 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,17,19,21,16,18,20)$ |
7D1 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)(15,21,20,19,18,17,16)$ |
7D-1 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)( 8, 9,10,11,12,13,14)$ |
7D2 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,13,11, 9,14,12,10)$ |
7D-2 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 3, 5, 7, 2, 4, 6)(15,17,19,21,16,18,20)$ |
7D3 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 5, 2, 6, 3, 7, 4)(15,19,16,20,17,21,18)$ |
7D-3 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,11,14,10,13, 9,12)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 3A1 | 3A-1 | 7A1 | 7A-1 | 7B1 | 7B-1 | 7C1 | 7C-1 | 7C2 | 7C-2 | 7C3 | 7C-3 | 7D1 | 7D-1 | 7D2 | 7D-2 | 7D3 | 7D-3 | ||
Size | 1 | 49 | 49 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
3 P | 1A | 3A-1 | 3A1 | 7A1 | 7A-1 | 7B1 | 7B-1 | 7C2 | 7C-2 | 7C-3 | 7C3 | 7C-1 | 7C1 | 7D2 | 7D-2 | 7D-3 | 7D3 | 7D-1 | 7D1 | |
7 P | 1A | 1A | 1A | 7A-1 | 7A1 | 7B-1 | 7B1 | 7C3 | 7C-3 | 7C-1 | 7C1 | 7C2 | 7C-2 | 7D3 | 7D-3 | 7D-1 | 7D1 | 7D2 | 7D-2 | |
Type | ||||||||||||||||||||
147.5.1a | R | |||||||||||||||||||
147.5.1b1 | C | |||||||||||||||||||
147.5.1b2 | C | |||||||||||||||||||
147.5.3a1 | C | |||||||||||||||||||
147.5.3a2 | C | |||||||||||||||||||
147.5.3b1 | C | |||||||||||||||||||
147.5.3b2 | C | |||||||||||||||||||
147.5.3c1 | C | |||||||||||||||||||
147.5.3c2 | C | |||||||||||||||||||
147.5.3c3 | C | |||||||||||||||||||
147.5.3c4 | C | |||||||||||||||||||
147.5.3c5 | C | |||||||||||||||||||
147.5.3c6 | C | |||||||||||||||||||
147.5.3d1 | C | |||||||||||||||||||
147.5.3d2 | C | |||||||||||||||||||
147.5.3d3 | C | |||||||||||||||||||
147.5.3d4 | C | |||||||||||||||||||
147.5.3d5 | C | |||||||||||||||||||
147.5.3d6 | C |
Regular extensions
Data not computed