Properties

Label 18T49
Degree $18$
Order $108$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $\He_3:C_4$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(18, 49);
 

Group invariants

Abstract group:  $\He_3:C_4$
magma: IdentifyGroup(G);
 
Order:  $108=2^{2} \cdot 3^{3}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $18$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $49$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,8,14)(2,9,15)(3,7,13)(4,10,18)(5,11,16)(6,12,17)$, $(1,6,15,10,3,5,14,12,2,4,13,11)(7,17,8,18,9,16)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$36$:  $C_3^2:C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: $C_3^2:C_4$

Degree 9: None

Low degree siblings

18T49, 27T32, 36T85 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{18}$ $1$ $1$ $0$ $()$
2A $2^{6},1^{6}$ $9$ $2$ $6$ $( 1,14)( 2,15)( 3,13)( 4,10)( 5,11)( 6,12)$
3A1 $3^{6}$ $1$ $3$ $12$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$
3A-1 $3^{6}$ $1$ $3$ $12$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$
3B $3^{5},1^{3}$ $12$ $3$ $10$ $( 1,13, 7)( 2,14, 8)( 3,15, 9)( 4, 5, 6)(16,18,17)$
3C $3^{6}$ $12$ $3$ $12$ $( 1,14, 7)( 2,15, 8)( 3,13, 9)( 4,10,16)( 5,11,17)( 6,12,18)$
4A1 $4^{3},2^{3}$ $9$ $4$ $12$ $( 1, 4,14,10)( 2, 5,15,11)( 3, 6,13,12)( 7,18)( 8,16)( 9,17)$
4A-1 $4^{3},2^{3}$ $9$ $4$ $12$ $( 1,10,14, 4)( 2,11,15, 5)( 3,12,13, 6)( 7,18)( 8,16)( 9,17)$
6A1 $6^{2},3^{2}$ $9$ $6$ $14$ $( 1,15, 3,14, 2,13)( 4,11, 6,10, 5,12)( 7, 8, 9)(16,17,18)$
6A-1 $6^{2},3^{2}$ $9$ $6$ $14$ $( 1,13, 2,14, 3,15)( 4,12, 5,10, 6,11)( 7, 9, 8)(16,18,17)$
12A1 $12,6$ $9$ $12$ $16$ $( 1, 6,15,10, 3, 5,14,12, 2, 4,13,11)( 7,17, 8,18, 9,16)$
12A-1 $12,6$ $9$ $12$ $16$ $( 1,11,13, 4, 2,12,14, 5, 3,10,15, 6)( 7,16, 9,18, 8,17)$
12A5 $12,6$ $9$ $12$ $16$ $( 1, 5,13,10, 2, 6,14,11, 3, 4,15,12)( 7,16, 9,18, 8,17)$
12A-5 $12,6$ $9$ $12$ $16$ $( 1,12,15, 4, 3,11,14, 6, 2,10,13, 5)( 7,17, 8,18, 9,16)$

Malle's constant $a(G)$:     $1/6$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 3B 3C 4A1 4A-1 6A1 6A-1 12A1 12A-1 12A5 12A-5
Size 1 9 1 1 12 12 9 9 9 9 9 9 9 9
2 P 1A 1A 3A-1 3A1 3B 3C 2A 2A 3A1 3A-1 6A1 6A-1 6A-1 6A1
3 P 1A 2A 1A 1A 1A 1A 4A-1 4A1 2A 2A 4A-1 4A1 4A-1 4A1
Type
108.15.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
108.15.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
108.15.1c1 C 1 1 1 1 1 1 i i 1 1 i i i i
108.15.1c2 C 1 1 1 1 1 1 i i 1 1 i i i i
108.15.3a1 C 3 1 3ζ31 3ζ3 0 0 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31
108.15.3a2 C 3 1 3ζ3 3ζ31 0 0 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3
108.15.3b1 C 3 1 3ζ31 3ζ3 0 0 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31
108.15.3b2 C 3 1 3ζ3 3ζ31 0 0 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3
108.15.3c1 C 3 1 3ζ122 3ζ124 0 0 ζ123 ζ123 ζ124 ζ122 ζ125 ζ12 ζ12 ζ125
108.15.3c2 C 3 1 3ζ124 3ζ122 0 0 ζ123 ζ123 ζ122 ζ124 ζ12 ζ125 ζ125 ζ12
108.15.3c3 C 3 1 3ζ122 3ζ124 0 0 ζ123 ζ123 ζ124 ζ122 ζ125 ζ12 ζ12 ζ125
108.15.3c4 C 3 1 3ζ124 3ζ122 0 0 ζ123 ζ123 ζ122 ζ124 ζ12 ζ125 ζ125 ζ12
108.15.4a R 4 0 4 4 2 1 0 0 0 0 0 0 0 0
108.15.4b R 4 0 4 4 1 2 0 0 0 0 0 0 0 0

magma: CharacterTable(G);
 

Regular extensions

Data not computed