Show commands:
Magma
magma: G := TransitiveGroup(18, 47);
Group invariants
Abstract group: | $C_3^2.A_4$ | magma: IdentifyGroup(G);
| |
Order: | $108=2^{2} \cdot 3^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $47$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,13,9,4,15,11,5,18,8)(2,14,10,3,16,12,6,17,7)$, $(1,17,9,4,14,11,5,16,8)(2,18,10,3,13,12,6,15,7)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 $9$: $C_3^2$ $12$: $A_4$ $27$: $C_9:C_3$ $36$: $C_3\times A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $A_4$
Degree 9: $C_9:C_3$
Low degree siblings
18T47 x 2, 36T83Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{6}$ | $3$ | $2$ | $6$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
3A1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 5, 4)( 2, 6, 3)( 7,12,10)( 8,11, 9)(13,18,15)(14,17,16)$ |
3A-1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 4, 5)( 2, 3, 6)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)$ |
3B1 | $3^{4},1^{6}$ | $3$ | $3$ | $8$ | $( 7,12,10)( 8,11, 9)(13,15,18)(14,16,17)$ |
3B-1 | $3^{4},1^{6}$ | $3$ | $3$ | $8$ | $( 7,10,12)( 8, 9,11)(13,18,15)(14,17,16)$ |
6A1 | $6^{2},1^{6}$ | $3$ | $6$ | $10$ | $( 7, 9,12, 8,10,11)(13,17,15,14,18,16)$ |
6A-1 | $6^{2},1^{6}$ | $3$ | $6$ | $10$ | $( 1, 3, 5, 2, 4, 6)(13,17,15,14,18,16)$ |
6B1 | $6^{2},3^{2}$ | $3$ | $6$ | $14$ | $( 1, 3, 5, 2, 4, 6)( 7,10,12)( 8, 9,11)(13,16,18,14,15,17)$ |
6B-1 | $6^{2},3^{2}$ | $3$ | $6$ | $14$ | $( 1, 6, 4, 2, 5, 3)( 7,12,10)( 8,11, 9)(13,17,15,14,18,16)$ |
6C1 | $6,3^{2},2^{3}$ | $3$ | $6$ | $12$ | $( 1, 5, 4)( 2, 6, 3)( 7, 8)( 9,10)(11,12)(13,16,18,14,15,17)$ |
6C-1 | $6,3^{2},2^{3}$ | $3$ | $6$ | $12$ | $( 1, 6, 4, 2, 5, 3)( 7,10,12)( 8, 9,11)(13,14)(15,16)(17,18)$ |
6D1 | $6,3^{2},2^{3}$ | $3$ | $6$ | $12$ | $( 1, 4, 5)( 2, 3, 6)( 7,11,10, 8,12, 9)(13,14)(15,16)(17,18)$ |
6D-1 | $6,3^{2},2^{3}$ | $3$ | $6$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12,10)( 8,11, 9)(13,16,18,14,15,17)$ |
9A1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1, 9,17, 5, 8,16, 4,11,14)( 2,10,18, 6, 7,15, 3,12,13)$ |
9A-1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1,14,11, 4,16, 8, 5,17, 9)( 2,13,12, 3,15, 7, 6,18,10)$ |
9B1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1,17,11, 4,14, 8, 5,16, 9)( 2,18,12, 3,13, 7, 6,15,10)$ |
9B-1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1, 9,16, 5, 8,14, 4,11,17)( 2,10,15, 6, 7,13, 3,12,18)$ |
9C1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1, 8,16, 5,11,14, 4, 9,17)( 2, 7,15, 6,12,13, 3,10,18)$ |
9C-1 | $9^{2}$ | $12$ | $9$ | $16$ | $( 1,17, 9, 4,14,11, 5,16, 8)( 2,18,10, 3,13,12, 6,15, 7)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 9A1 | 9A-1 | 9B1 | 9B-1 | 9C1 | 9C-1 | ||
Size | 1 | 3 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 12 | 12 | 12 | 12 | 12 | 12 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3B1 | 3B-1 | 3A1 | 3A-1 | 3B1 | 3B-1 | 3B1 | 3B-1 | 9A-1 | 9A1 | 9B-1 | 9B1 | 9C-1 | 9C1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | |
Type | |||||||||||||||||||||
108.21.1a | R | ||||||||||||||||||||
108.21.1b1 | C | ||||||||||||||||||||
108.21.1b2 | C | ||||||||||||||||||||
108.21.1c1 | C | ||||||||||||||||||||
108.21.1c2 | C | ||||||||||||||||||||
108.21.1d1 | C | ||||||||||||||||||||
108.21.1d2 | C | ||||||||||||||||||||
108.21.1e1 | C | ||||||||||||||||||||
108.21.1e2 | C | ||||||||||||||||||||
108.21.3a | R | ||||||||||||||||||||
108.21.3b1 | C | ||||||||||||||||||||
108.21.3b2 | C | ||||||||||||||||||||
108.21.3c1 | C | ||||||||||||||||||||
108.21.3c2 | C | ||||||||||||||||||||
108.21.3d1 | C | ||||||||||||||||||||
108.21.3d2 | C | ||||||||||||||||||||
108.21.3e1 | C | ||||||||||||||||||||
108.21.3e2 | C | ||||||||||||||||||||
108.21.3f1 | C | ||||||||||||||||||||
108.21.3f2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed