Show commands:
Magma
magma: G := TransitiveGroup(18, 37);
Group invariants
Abstract group: | $C_3:S_4$ | magma: IdentifyGroup(G);
| |
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,6,3,2,5,4)(7,12,10,8,11,9)(13,18,16)(14,17,15)$, $(1,6)(2,5)(3,4)(7,16,8,15)(9,14,10,13)(11,18,12,17)$, $(1,16)(2,15)(3,13)(4,14)(5,18)(6,17)(7,11)(8,12)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ x 4 $18$: $C_3^2:C_2$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 4
Degree 6: $S_4$
Degree 9: $C_3^2:C_2$
Low degree siblings
12T44 x 3, 18T40, 24T79 x 3, 36T23, 36T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{6}$ | $3$ | $2$ | $6$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
2B | $2^{8},1^{2}$ | $18$ | $2$ | $8$ | $( 1,15)( 2,16)( 3,14)( 4,13)( 5,17)( 6,18)( 7,11)( 8,12)$ |
3A | $3^{6}$ | $2$ | $3$ | $12$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10)( 8,12, 9)(13,18,16)(14,17,15)$ |
3B | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,15,10)( 2,16, 9)( 3,17,11)( 4,18,12)( 5,14, 7)( 6,13, 8)$ |
3C | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,14,11)( 2,13,12)( 3,15, 7)( 4,16, 8)( 5,17,10)( 6,18, 9)$ |
3D | $3^{6}$ | $8$ | $3$ | $12$ | $( 1, 7,17)( 2, 8,18)( 3,10,14)( 4, 9,13)( 5,11,15)( 6,12,16)$ |
4A | $4^{3},2^{3}$ | $18$ | $4$ | $12$ | $( 1,16, 2,15)( 3,13, 4,14)( 5,18, 6,17)( 7,12)( 8,11)( 9,10)$ |
6A | $6^{2},3^{2}$ | $6$ | $6$ | $14$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10, 8,11, 9)(13,17,16,14,18,15)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 6A | ||
Size | 1 | 3 | 18 | 2 | 8 | 8 | 8 | 18 | 6 | |
2 P | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 3A | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 2A | |
Type | ||||||||||
72.43.1a | R | |||||||||
72.43.1b | R | |||||||||
72.43.2a | R | |||||||||
72.43.2b | R | |||||||||
72.43.2c | R | |||||||||
72.43.2d | R | |||||||||
72.43.3a | R | |||||||||
72.43.3b | R | |||||||||
72.43.6a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed