Properties

Label 18T36
Degree $18$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $\SOPlus(4,2)$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(18, 36);
 

Group invariants

Abstract group:  $\SOPlus(4,2)$
magma: IdentifyGroup(G);
 
Order:  $72=2^{3} \cdot 3^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $18$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $36$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,10)(2,9)(3,6)(4,5)(7,18)(8,17)(11,12)(13,14)(15,16)$, $(3,10,18,11)(4,9,17,12)(5,8,15,14)(6,7,16,13)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$8$:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: None

Degree 9: $S_3^2:C_2$

Low degree siblings

6T13 x 2, 9T16, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 24T72 x 2, 36T53, 36T54 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{18}$ $1$ $1$ $0$ $()$
2A $2^{9}$ $6$ $2$ $9$ $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,11)(10,12)(17,18)$
2B $2^{9}$ $6$ $2$ $9$ $( 1, 8)( 2, 7)( 3,16)( 4,15)( 5,12)( 6,11)( 9,10)(13,14)(17,18)$
2C $2^{8},1^{2}$ $9$ $2$ $8$ $( 1, 4)( 2, 3)( 5,11)( 6,12)( 7,16)( 8,15)( 9,13)(10,14)$
3A $3^{6}$ $4$ $3$ $12$ $( 1,17, 4)( 2,18, 3)( 5,10, 8)( 6, 9, 7)(11,15,14)(12,16,13)$
3B $3^{6}$ $4$ $3$ $12$ $( 1,13, 7)( 2,14, 8)( 3,15,10)( 4,16, 9)( 5,18,11)( 6,17,12)$
4A $4^{4},1^{2}$ $18$ $4$ $12$ $( 1, 7, 4,16)( 2, 8, 3,15)( 5,14,11,10)( 6,13,12, 9)$
6A $6^{3}$ $12$ $6$ $15$ $( 1,14,17,11, 4,15)( 2,13,18,12, 3,16)( 5, 7,10, 6, 8, 9)$
6B $6^{3}$ $12$ $6$ $15$ $( 1,11,16, 8, 6, 3)( 2,12,15, 7, 5, 4)( 9,14,17,10,13,18)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 3B 4A 6A 6B
Size 1 6 6 9 4 4 18 12 12
2 P 1A 1A 1A 1A 3A 3B 2C 3A 3B
3 P 1A 2A 2B 2C 1A 1A 4A 2A 2B
Type
72.40.1a R 1 1 1 1 1 1 1 1 1
72.40.1b R 1 1 1 1 1 1 1 1 1
72.40.1c R 1 1 1 1 1 1 1 1 1
72.40.1d R 1 1 1 1 1 1 1 1 1
72.40.2a R 2 0 0 2 2 2 0 0 0
72.40.4a R 4 0 2 0 2 1 0 0 1
72.40.4b R 4 2 0 0 1 2 0 1 0
72.40.4c R 4 2 0 0 1 2 0 1 0
72.40.4d R 4 0 2 0 2 1 0 0 1

magma: CharacterTable(G);
 

Regular extensions

Data not computed