Show commands:
Magma
magma: G := TransitiveGroup(18, 30);
Group invariants
Abstract group: | $C_3\times S_4$ | magma: IdentifyGroup(G);
| |
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,3,5)(2,4,6)(7,18,11,15,9,13,8,17,12,16,10,14)$, $(1,8,18)(2,7,17)(3,10,13)(4,9,14)(5,11,16)(6,12,15)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: $S_4$
Degree 9: $S_3\times C_3$
Low degree siblings
12T45, 18T33, 24T80, 24T84, 36T20, 36T52Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{6}$ | $3$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)(13,14)(15,16)(17,18)$ |
2B | $2^{9}$ | $6$ | $2$ | $9$ | $( 1,12)( 2,11)( 3, 7)( 4, 8)( 5, 9)( 6,10)(13,14)(15,16)(17,18)$ |
3A1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
3A-1 | $3^{6}$ | $1$ | $3$ | $12$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,18)(14,15,17)$ |
3B | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,13,11)( 2,14,12)( 3,16, 8)( 4,15, 7)( 5,18,10)( 6,17, 9)$ |
3C1 | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,16,10)( 2,15, 9)( 3,18,11)( 4,17,12)( 5,13, 8)( 6,14, 7)$ |
3C-1 | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,18, 8)( 2,17, 7)( 3,13,10)( 4,14, 9)( 5,16,11)( 6,15,12)$ |
4A | $4^{3},1^{6}$ | $6$ | $4$ | $9$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,18, 6,17)$ |
6A1 | $6^{2},3^{2}$ | $3$ | $6$ | $14$ | $( 1, 6, 3, 2, 5, 4)( 7,12, 9)( 8,11,10)(13,17,16,14,18,15)$ |
6A-1 | $6^{2},3^{2}$ | $3$ | $6$ | $14$ | $( 1, 4, 5, 2, 3, 6)( 7, 9,12)( 8,10,11)(13,15,18,14,16,17)$ |
6B1 | $6^{3}$ | $6$ | $6$ | $15$ | $( 1, 7, 5,12, 3, 9)( 2, 8, 6,11, 4,10)(13,15,18,14,16,17)$ |
6B-1 | $6^{3}$ | $6$ | $6$ | $15$ | $( 1, 9, 3,12, 5, 7)( 2,10, 4,11, 6, 8)(13,17,16,14,18,15)$ |
12A1 | $12,3^{2}$ | $6$ | $12$ | $15$ | $( 1,15, 6,13, 3,17, 2,16, 5,14, 4,18)( 7, 9,12)( 8,10,11)$ |
12A-1 | $12,3^{2}$ | $6$ | $12$ | $15$ | $( 1,17, 4,13, 5,15, 2,18, 3,14, 6,16)( 7,12, 9)( 8,11,10)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | 12A1 | 12A-1 | ||
Size | 1 | 3 | 6 | 1 | 1 | 8 | 8 | 8 | 6 | 3 | 3 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 2A | 3A-1 | 3A1 | 3A1 | 3A-1 | 6A1 | 6A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 4A | 4A | |
Type | ||||||||||||||||
72.42.1a | R | |||||||||||||||
72.42.1b | R | |||||||||||||||
72.42.1c1 | C | |||||||||||||||
72.42.1c2 | C | |||||||||||||||
72.42.1d1 | C | |||||||||||||||
72.42.1d2 | C | |||||||||||||||
72.42.2a | R | |||||||||||||||
72.42.2b1 | C | |||||||||||||||
72.42.2b2 | C | |||||||||||||||
72.42.3a | R | |||||||||||||||
72.42.3b | R | |||||||||||||||
72.42.3c1 | C | |||||||||||||||
72.42.3c2 | C | |||||||||||||||
72.42.3d1 | C | |||||||||||||||
72.42.3d2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed