Show commands: Magma
Group invariants
Abstract group: | $\PSL(2,16)$ |
| |
Order: | $4080=2^{4} \cdot 3 \cdot 5 \cdot 17$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $17$ |
| |
Transitive number $t$: | $6$ |
| |
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(2,3)(4,9)(5,7)(6,8)(10,14)(11,13)(12,15)(16,17)$, $(1,16)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)$, $(1,6,13,5,4,2,15,10,14,12,3,9,7,11,8)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
$1^{17}$ | $1$ | $1$ | $0$ | $()$ | |
$17$ | $240$ | $17$ | $16$ | $( 1, 4, 6, 3, 7,14, 8,11,16,13,17,15, 2, 9,10,12, 5)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1, 7,16, 2, 5, 3,11,15,12, 6, 8,17,10, 4,14,13, 9)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1, 6, 7, 8,16,17, 2,10, 5, 4, 3,14,11,13,15, 9,12)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1,16, 5,11,12, 8,10,14, 9, 7, 2, 3,15, 6,17, 4,13)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1, 8, 2, 4,11, 9, 6,16,10, 3,13,12, 7,17, 5,14,15)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1,11,10, 7,15, 4,16,12,14, 2, 6,13, 5, 8, 9, 3,17)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1, 2,11, 6,10,13, 7, 5,15, 8, 4, 9,16, 3,12,17,14)$ | |
$17$ | $240$ | $17$ | $16$ | $( 1,10,15,16,14, 6, 5, 9,17,11, 7, 4,12, 2,13, 8, 3)$ | |
$5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1,15, 3,14, 6)( 2, 7,12, 9,17)( 4,10,13, 5, 8)$ | |
$5^{3},1^{2}$ | $272$ | $5$ | $12$ | $( 1,14,15, 6, 3)( 2, 9, 7,17,12)( 4, 5,10, 8,13)$ | |
$3^{5},1^{2}$ | $272$ | $3$ | $10$ | $( 1, 4, 7)( 2, 6, 8)( 3,13, 9)( 5,17,14)(10,12,15)$ | |
$15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,17,10, 6, 9, 4,14,12, 8, 3, 7, 5,15, 2,13)$ | |
$15,1^{2}$ | $272$ | $15$ | $14$ | $( 1, 5,12, 6,13, 7,14,10, 2, 3, 4,17,15, 8, 9)$ | |
$15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,12,13,14, 2, 4,15, 9, 5, 6, 7,10, 3,17, 8)$ | |
$15,1^{2}$ | $272$ | $15$ | $14$ | $( 1,10, 9,14, 8, 7,15,13,17, 6, 4,12, 3, 5, 2)$ | |
$2^{8},1$ | $255$ | $2$ | $8$ | $( 1, 9)( 2,17)( 3,12)( 4, 8)( 5,11)( 7,16)(10,14)(13,15)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 3A | 5A1 | 5A2 | 15A1 | 15A2 | 15A4 | 15A7 | 17A1 | 17A2 | 17A3 | 17A4 | 17A5 | 17A6 | 17A7 | 17A8 | ||
Size | 1 | 255 | 272 | 272 | 272 | 272 | 272 | 272 | 272 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | |
2 P | 1A | 1A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 17A2 | 17A4 | 17A6 | 17A8 | 17A7 | 17A5 | 17A3 | 17A1 | |
3 P | 1A | 2A | 1A | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A2 | 17A3 | 17A6 | 17A8 | 17A5 | 17A2 | 17A1 | 17A4 | 17A7 | |
5 P | 1A | 2A | 3A | 1A | 1A | 3A | 3A | 3A | 3A | 17A5 | 17A7 | 17A2 | 17A3 | 17A8 | 17A4 | 17A1 | 17A6 | |
17 P | 1A | 2A | 3A | 5A2 | 5A1 | 15A2 | 15A4 | 15A7 | 15A1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
Type | ||||||||||||||||||
4080.a.1a | R | |||||||||||||||||
4080.a.15a1 | R | |||||||||||||||||
4080.a.15a2 | R | |||||||||||||||||
4080.a.15a3 | R | |||||||||||||||||
4080.a.15a4 | R | |||||||||||||||||
4080.a.15a5 | R | |||||||||||||||||
4080.a.15a6 | R | |||||||||||||||||
4080.a.15a7 | R | |||||||||||||||||
4080.a.15a8 | R | |||||||||||||||||
4080.a.16a | R | |||||||||||||||||
4080.a.17a | R | |||||||||||||||||
4080.a.17b1 | R | |||||||||||||||||
4080.a.17b2 | R | |||||||||||||||||
4080.a.17c1 | R | |||||||||||||||||
4080.a.17c2 | R | |||||||||||||||||
4080.a.17c3 | R | |||||||||||||||||
4080.a.17c4 | R |
Regular extensions
Data not computed