Properties

Label 17T4
Degree $17$
Order $136$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_{17}:C_{8}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(17, 4);
 

Group invariants

Abstract group:  $C_{17}:C_{8}$
magma: IdentifyGroup(G);
 
Order:  $136=2^{3} \cdot 17$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $17$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)$, $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$8$:  $C_8$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{17}$ $1$ $1$ $0$ $()$
2A $2^{8},1$ $17$ $2$ $8$ $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,17)(13,16)(14,15)$
4A1 $4^{4},1$ $17$ $4$ $12$ $( 1, 9,11, 3)( 2, 5,10, 7)( 4,14, 8,15)(12,16,17,13)$
4A-1 $4^{4},1$ $17$ $4$ $12$ $( 1, 3,11, 9)( 2, 7,10, 5)( 4,15, 8,14)(12,13,17,16)$
8A1 $8^{2},1$ $17$ $8$ $14$ $( 1,12, 9,16,11,17, 3,13)( 2, 4, 5,14,10, 8, 7,15)$
8A-1 $8^{2},1$ $17$ $8$ $14$ $( 1,13, 3,17,11,16, 9,12)( 2,15, 7, 8,10,14, 5, 4)$
8A3 $8^{2},1$ $17$ $8$ $14$ $( 1,16, 3,12,11,13, 9,17)( 2,14, 7, 4,10,15, 5, 8)$
8A-3 $8^{2},1$ $17$ $8$ $14$ $( 1,17, 9,13,11,12, 3,16)( 2, 8, 5,15,10, 4, 7,14)$
17A1 $17$ $8$ $17$ $16$ $( 1, 5, 9,13,17, 4, 8,12,16, 3, 7,11,15, 2, 6,10,14)$
17A3 $17$ $8$ $17$ $16$ $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 8A1 8A-1 8A3 8A-3 17A1 17A3
Size 1 17 17 17 17 17 17 17 8 8
2 P 1A 1A 2A 2A 4A1 4A-1 4A-1 4A1 17A1 17A3
17 P 1A 2A 4A1 4A-1 8A1 8A-1 8A3 8A-3 1A 1A
Type
136.12.1a R 1 1 1 1 1 1 1 1 1 1
136.12.1b R 1 1 1 1 1 1 1 1 1 1
136.12.1c1 C 1 1 1 1 i i i i 1 1
136.12.1c2 C 1 1 1 1 i i i i 1 1
136.12.1d1 C 1 1 ζ82 ζ82 ζ83 ζ8 ζ8 ζ83 1 1
136.12.1d2 C 1 1 ζ82 ζ82 ζ8 ζ83 ζ83 ζ8 1 1
136.12.1d3 C 1 1 ζ82 ζ82 ζ83 ζ8 ζ8 ζ83 1 1
136.12.1d4 C 1 1 ζ82 ζ82 ζ8 ζ83 ζ83 ζ8 1 1
136.12.8a1 R 8 0 0 0 0 0 0 0 ζ177+ζ176+ζ175+ζ173+ζ173+ζ175+ζ176+ζ177 ζ177ζ176ζ175ζ1731ζ173ζ175ζ176ζ177
136.12.8a2 R 8 0 0 0 0 0 0 0 ζ177ζ176ζ175ζ1731ζ173ζ175ζ176ζ177 ζ177+ζ176+ζ175+ζ173+ζ173+ζ175+ζ176+ζ177

magma: CharacterTable(G);
 

Regular extensions

Data not computed