Show commands:
Magma
magma: G := TransitiveGroup(17, 4);
Group invariants
Abstract group: | $C_{17}:C_{8}$ | magma: IdentifyGroup(G);
| |
Order: | $136=2^{3} \cdot 17$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $17$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)$, $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{17}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1$ | $17$ | $2$ | $8$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,17)(13,16)(14,15)$ |
4A1 | $4^{4},1$ | $17$ | $4$ | $12$ | $( 1, 9,11, 3)( 2, 5,10, 7)( 4,14, 8,15)(12,16,17,13)$ |
4A-1 | $4^{4},1$ | $17$ | $4$ | $12$ | $( 1, 3,11, 9)( 2, 7,10, 5)( 4,15, 8,14)(12,13,17,16)$ |
8A1 | $8^{2},1$ | $17$ | $8$ | $14$ | $( 1,12, 9,16,11,17, 3,13)( 2, 4, 5,14,10, 8, 7,15)$ |
8A-1 | $8^{2},1$ | $17$ | $8$ | $14$ | $( 1,13, 3,17,11,16, 9,12)( 2,15, 7, 8,10,14, 5, 4)$ |
8A3 | $8^{2},1$ | $17$ | $8$ | $14$ | $( 1,16, 3,12,11,13, 9,17)( 2,14, 7, 4,10,15, 5, 8)$ |
8A-3 | $8^{2},1$ | $17$ | $8$ | $14$ | $( 1,17, 9,13,11,12, 3,16)( 2, 8, 5,15,10, 4, 7,14)$ |
17A1 | $17$ | $8$ | $17$ | $16$ | $( 1, 5, 9,13,17, 4, 8,12,16, 3, 7,11,15, 2, 6,10,14)$ |
17A3 | $17$ | $8$ | $17$ | $16$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | 17A1 | 17A3 | ||
Size | 1 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 8 | 8 | |
2 P | 1A | 1A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | 17A1 | 17A3 | |
17 P | 1A | 2A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | 1A | 1A | |
Type | |||||||||||
136.12.1a | R | ||||||||||
136.12.1b | R | ||||||||||
136.12.1c1 | C | ||||||||||
136.12.1c2 | C | ||||||||||
136.12.1d1 | C | ||||||||||
136.12.1d2 | C | ||||||||||
136.12.1d3 | C | ||||||||||
136.12.1d4 | C | ||||||||||
136.12.8a1 | R | ||||||||||
136.12.8a2 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed