Properties

Label 17T2
Degree $17$
Order $34$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $D_{17}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(17, 2);
 

Group invariants

Abstract group:  $D_{17}$
magma: IdentifyGroup(G);
 
Order:  $34=2 \cdot 17$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $17$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)$, $(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{17}$ $1$ $1$ $0$ $()$
2A $2^{8},1$ $17$ $2$ $8$ $( 2,17)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)$
17A1 $17$ $2$ $17$ $16$ $( 1,15,12, 9, 6, 3,17,14,11, 8, 5, 2,16,13,10, 7, 4)$
17A2 $17$ $2$ $17$ $16$ $( 1,14,10, 6, 2,15,11, 7, 3,16,12, 8, 4,17,13, 9, 5)$
17A3 $17$ $2$ $17$ $16$ $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)$
17A4 $17$ $2$ $17$ $16$ $( 1,12, 6,17,11, 5,16,10, 4,15, 9, 3,14, 8, 2,13, 7)$
17A5 $17$ $2$ $17$ $16$ $( 1,11, 4,14, 7,17,10, 3,13, 6,16, 9, 2,12, 5,15, 8)$
17A6 $17$ $2$ $17$ $16$ $( 1,10, 2,11, 3,12, 4,13, 5,14, 6,15, 7,16, 8,17, 9)$
17A7 $17$ $2$ $17$ $16$ $( 1,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
17A8 $17$ $2$ $17$ $16$ $( 1,16,14,12,10, 8, 6, 4, 2,17,15,13,11, 9, 7, 5, 3)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 17A1 17A2 17A3 17A4 17A5 17A6 17A7 17A8
Size 1 17 2 2 2 2 2 2 2 2
2 P 1A 1A 17A6 17A8 17A7 17A5 17A3 17A1 17A2 17A4
17 P 1A 2A 1A 1A 1A 1A 1A 1A 1A 1A
Type
34.1.1a R 1 1 1 1 1 1 1 1 1 1
34.1.1b R 1 1 1 1 1 1 1 1 1 1
34.1.2a1 R 2 0 ζ178+ζ178 ζ171+ζ17 ζ177+ζ177 ζ172+ζ172 ζ176+ζ176 ζ173+ζ173 ζ175+ζ175 ζ174+ζ174
34.1.2a2 R 2 0 ζ177+ζ177 ζ173+ζ173 ζ174+ζ174 ζ176+ζ176 ζ171+ζ17 ζ178+ζ178 ζ172+ζ172 ζ175+ζ175
34.1.2a3 R 2 0 ζ176+ζ176 ζ175+ζ175 ζ171+ζ17 ζ177+ζ177 ζ174+ζ174 ζ172+ζ172 ζ178+ζ178 ζ173+ζ173
34.1.2a4 R 2 0 ζ175+ζ175 ζ177+ζ177 ζ172+ζ172 ζ173+ζ173 ζ178+ζ178 ζ174+ζ174 ζ171+ζ17 ζ176+ζ176
34.1.2a5 R 2 0 ζ174+ζ174 ζ178+ζ178 ζ175+ζ175 ζ171+ζ17 ζ173+ζ173 ζ177+ζ177 ζ176+ζ176 ζ172+ζ172
34.1.2a6 R 2 0 ζ173+ζ173 ζ176+ζ176 ζ178+ζ178 ζ175+ζ175 ζ172+ζ172 ζ171+ζ17 ζ174+ζ174 ζ177+ζ177
34.1.2a7 R 2 0 ζ172+ζ172 ζ174+ζ174 ζ176+ζ176 ζ178+ζ178 ζ177+ζ177 ζ175+ζ175 ζ173+ζ173 ζ171+ζ17
34.1.2a8 R 2 0 ζ171+ζ17 ζ172+ζ172 ζ173+ζ173 ζ174+ζ174 ζ175+ζ175 ζ176+ζ176 ζ177+ζ177 ζ178+ζ178

magma: CharacterTable(G);