Show commands:
Magma
magma: G := TransitiveGroup(17, 2);
Group invariants
Abstract group: | $D_{17}$ | magma: IdentifyGroup(G);
| |
Order: | $34=2 \cdot 17$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $17$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)$, $(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{17}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1$ | $17$ | $2$ | $8$ | $( 2,17)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)$ |
17A1 | $17$ | $2$ | $17$ | $16$ | $( 1,15,12, 9, 6, 3,17,14,11, 8, 5, 2,16,13,10, 7, 4)$ |
17A2 | $17$ | $2$ | $17$ | $16$ | $( 1,14,10, 6, 2,15,11, 7, 3,16,12, 8, 4,17,13, 9, 5)$ |
17A3 | $17$ | $2$ | $17$ | $16$ | $( 1,13, 8, 3,15,10, 5,17,12, 7, 2,14, 9, 4,16,11, 6)$ |
17A4 | $17$ | $2$ | $17$ | $16$ | $( 1,12, 6,17,11, 5,16,10, 4,15, 9, 3,14, 8, 2,13, 7)$ |
17A5 | $17$ | $2$ | $17$ | $16$ | $( 1,11, 4,14, 7,17,10, 3,13, 6,16, 9, 2,12, 5,15, 8)$ |
17A6 | $17$ | $2$ | $17$ | $16$ | $( 1,10, 2,11, 3,12, 4,13, 5,14, 6,15, 7,16, 8,17, 9)$ |
17A7 | $17$ | $2$ | $17$ | $16$ | $( 1,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
17A8 | $17$ | $2$ | $17$ | $16$ | $( 1,16,14,12,10, 8, 6, 4, 2,17,15,13,11, 9, 7, 5, 3)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 17A1 | 17A2 | 17A3 | 17A4 | 17A5 | 17A6 | 17A7 | 17A8 | ||
Size | 1 | 17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 17A6 | 17A8 | 17A7 | 17A5 | 17A3 | 17A1 | 17A2 | 17A4 | |
17 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
Type | |||||||||||
34.1.1a | R | ||||||||||
34.1.1b | R | ||||||||||
34.1.2a1 | R | ||||||||||
34.1.2a2 | R | ||||||||||
34.1.2a3 | R | ||||||||||
34.1.2a4 | R | ||||||||||
34.1.2a5 | R | ||||||||||
34.1.2a6 | R | ||||||||||
34.1.2a7 | R | ||||||||||
34.1.2a8 | R |
magma: CharacterTable(G);