Show commands:
Magma
magma: G := TransitiveGroup(16, 8);
Group invariants
Abstract group: | $C_4:C_4$ | magma: IdentifyGroup(G);
| |
Order: | $16=2^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $16$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,15,6,3)(2,16,5,4)(7,14,11,9)(8,13,12,10)$, $(1,8,6,12)(2,7,5,11)(3,9,15,14)(4,10,16,13)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$, $C_4\times C_2$, $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 2
Degree 8: $C_4\times C_2$, $D_4$, $Q_8$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,10, 2, 9)( 3,11, 4,12)( 5,14, 6,13)( 7,16, 8,15)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13, 2,14)( 3, 7, 4, 8)( 5, 9, 6,10)(11,16,12,15)$ |
4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,15, 6, 3)( 2,16, 5, 4)( 7,14,11, 9)( 8,13,12,10)$ |
4C-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7, 9,11,14)( 8,10,12,13)$ |
4D1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 7, 6,11)( 2, 8, 5,12)( 3,10,15,13)( 4, 9,16,14)$ |
4D-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,11, 6, 7)( 2,12, 5, 8)( 3,13,15,10)( 4,14,16, 9)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 4A | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 2B | 2B | 2C | 2C | 2C | 2C | |
Type | |||||||||||
16.4.1a | R | ||||||||||
16.4.1b | R | ||||||||||
16.4.1c | R | ||||||||||
16.4.1d | R | ||||||||||
16.4.1e1 | C | ||||||||||
16.4.1e2 | C | ||||||||||
16.4.1f1 | C | ||||||||||
16.4.1f2 | C | ||||||||||
16.4.2a | R | ||||||||||
16.4.2b | S |
magma: CharacterTable(G);
Regular extensions
Data not computed