Show commands:
Magma
magma: G := TransitiveGroup(16, 6);
Group invariants
Abstract group: | $C_8: C_2$ | magma: IdentifyGroup(G);
| |
Order: | $16=2^{4}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $16$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,9)(2,10)(3,4)(5,13)(6,14)(7,8)(11,12)(15,16)$, $(1,3,5,8,10,12,14,15)(2,4,6,7,9,11,13,16)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $C_8:C_2$
Low degree siblings
8T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 8,12,15)( 4, 7,11,16)$ |
4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1,14,10, 5)( 2,13, 9, 6)( 3,15,12, 8)( 4,16,11, 7)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3, 7,12,16)( 4, 8,11,15)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1,16, 5, 4,10, 7,14,11)( 2,15, 6, 3, 9, 8,13,12)$ |
8A-1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 3, 5, 8,10,12,14,15)( 2, 4, 6, 7, 9,11,13,16)$ |
8B1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1,11,14, 7,10, 4, 5,16)( 2,12,13, 8, 9, 3, 6,15)$ |
8B-1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 8,14, 3,10,15, 5,12)( 2, 7,13, 4, 9,16, 6,11)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 4A1 | 4A-1 | 4B | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 2A | 2A | 2A | 4A1 | 4A1 | 4A-1 | 4A-1 | |
Type | |||||||||||
16.6.1a | R | ||||||||||
16.6.1b | R | ||||||||||
16.6.1c | R | ||||||||||
16.6.1d | R | ||||||||||
16.6.1e1 | C | ||||||||||
16.6.1e2 | C | ||||||||||
16.6.1f1 | C | ||||||||||
16.6.1f2 | C | ||||||||||
16.6.2a1 | C | ||||||||||
16.6.2a2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed