Show commands: Magma
Group invariants
Abstract group: | $D_8:C_2$ |
| |
Order: | $32=2^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $47$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,13)(2,14)(3,12)(4,11)(5,9)(6,10)(7,15)(8,16)$, $(1,8,6,4,2,7,5,3)(9,16,14,12,10,15,13,11)$, $(1,10,2,9)(3,16,4,15)(5,13,6,14)(7,12,8,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T44 x 2, 32T26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $(1,2)(3,4)(5,6)(7,8)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,16)( 4,15)( 5,13)( 6,14)( 7,12)( 8,11)$ |
2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,16)( 6,15)( 7,13)( 8,14)$ |
4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)$ |
4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,15, 6,16)( 7,14, 8,13)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 7, 6, 3, 2, 8, 5, 4)( 9,15,14,11,10,16,13,12)$ |
8A-1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,12,13,16,10,11,14,15)$ |
8B1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 8, 6, 4, 2, 7, 5, 3)( 9,15,14,11,10,16,13,12)$ |
8B3 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 4, 5, 8, 2, 3, 6, 7)( 9,11,13,15,10,12,14,16)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 4A1 | 4A-1 | 4B | 4C | 4D | 8A1 | 8A-1 | 8B1 | 8B3 | ||
Size | 1 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||
32.42.1a | R | ||||||||||||||
32.42.1b | R | ||||||||||||||
32.42.1c | R | ||||||||||||||
32.42.1d | R | ||||||||||||||
32.42.1e | R | ||||||||||||||
32.42.1f | R | ||||||||||||||
32.42.1g | R | ||||||||||||||
32.42.1h | R | ||||||||||||||
32.42.2a | R | ||||||||||||||
32.42.2b | R | ||||||||||||||
32.42.2c1 | C | ||||||||||||||
32.42.2c2 | C | ||||||||||||||
32.42.2c3 | C | ||||||||||||||
32.42.2c4 | C |
Regular extensions
Data not computed