Show commands:
Magma
magma: G := TransitiveGroup(16, 45);
Group invariants
Abstract group: | $D_8:C_2$ | magma: IdentifyGroup(G);
| |
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $45$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,9)(2,10)(3,12)(4,11)(5,14)(6,13)(7,16)(8,15)$, $(1,4,2,3)(5,16,6,15)(7,11,8,12)(9,14,10,13)$, $(1,11)(2,12)(3,9)(4,10)(5,8)(6,7)(13,15)(14,16)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$
Low degree siblings
8T15 x 2, 16T35, 16T38 x 2, 32T21Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,13)( 2,14)( 3, 8)( 4, 7)( 5,10)( 6, 9)(11,16)(12,15)$ |
2D | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7, 8)(13,14)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,16, 2,15)( 3, 6, 4, 5)( 7, 9, 8,10)(11,13,12,14)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,15, 6,16)( 7,13, 8,14)( 9,12,10,11)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,11, 8,12)( 9,14,10,13)$ |
8A | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,14,16,11, 2,13,15,12)( 3, 7, 6, 9, 4, 8, 5,10)$ |
8B | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 9,15, 7, 2,10,16, 8)( 3,12, 5,13, 4,11, 6,14)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 8A | 8B | ||
Size | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 4A | 4A | |
Type | ||||||||||||
32.43.1a | R | |||||||||||
32.43.1b | R | |||||||||||
32.43.1c | R | |||||||||||
32.43.1d | R | |||||||||||
32.43.1e | R | |||||||||||
32.43.1f | R | |||||||||||
32.43.1g | R | |||||||||||
32.43.1h | R | |||||||||||
32.43.2a | R | |||||||||||
32.43.2b | R | |||||||||||
32.43.4a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed