Show commands:
Magma
magma: G := TransitiveGroup(16, 42);
Group invariants
Abstract group: | $C_4\wr C_2$ | magma: IdentifyGroup(G);
| |
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $42$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,3,5,15)(2,4,6,16)(7,8)(9,10)(11,12)(13,14)$, $(1,10)(2,9)(3,12)(4,11)(5,14)(6,13)(7,16)(8,15)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $C_4\wr C_2$ x 2
Low degree siblings
8T17 x 2, 16T28, 32T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,11)( 8,12)( 9,13)(10,14)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 4, 5,16)( 2, 3, 6,15)( 7,10,11,14)( 8, 9,12,13)$ |
4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1,16, 5, 4)( 2,15, 6, 3)( 7,14,11,10)( 8,13,12, 9)$ |
4B | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 3, 5,15)( 2, 4, 6,16)( 7, 8)( 9,10)(11,12)(13,14)$ |
4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,16, 5, 4)( 2,15, 6, 3)( 7,10,11,14)( 8, 9,12,13)$ |
4C-1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7, 9,11,13)( 8,10,12,14)$ |
4D1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1,15, 5, 3)( 2,16, 6, 4)( 7, 8)( 9,10)(11,12)(13,14)$ |
4D-1 | $4^{2},2^{4}$ | $2$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,13,11, 9)( 8,14,12,10)$ |
4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,14, 5,10)( 2,13, 6, 9)( 3, 8,15,12)( 4, 7,16,11)$ |
8A1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1,13, 4, 8, 5, 9,16,12)( 2,14, 3, 7, 6,10,15,11)$ |
8A-1 | $8^{2}$ | $4$ | $8$ | $14$ | $( 1, 8,16,13, 5,12, 4, 9)( 2, 7,15,14, 6,11, 3,10)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | 4E | 8A1 | 8A-1 | ||
Size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2A | 2B | 2B | 2B | 2A | 4A1 | 4A-1 | |
Type | |||||||||||||||
32.11.1a | R | ||||||||||||||
32.11.1b | R | ||||||||||||||
32.11.1c | R | ||||||||||||||
32.11.1d | R | ||||||||||||||
32.11.1e1 | C | ||||||||||||||
32.11.1e2 | C | ||||||||||||||
32.11.1f1 | C | ||||||||||||||
32.11.1f2 | C | ||||||||||||||
32.11.2a | R | ||||||||||||||
32.11.2b | R | ||||||||||||||
32.11.2c1 | C | ||||||||||||||
32.11.2c2 | C | ||||||||||||||
32.11.2d1 | C | ||||||||||||||
32.11.2d2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed