Show commands:
Magma
magma: G := TransitiveGroup(16, 33);
Group invariants
Abstract group: | $C_2^3:C_4$ | magma: IdentifyGroup(G);
| |
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $33$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,11,6,8)(2,12,5,7)(3,10,16,13)(4,9,15,14)$, $(1,9,3,7)(2,10,4,8)(5,13,15,11)(6,14,16,12)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $C_2^3 : C_4 $, $C_2^3: C_4$
Low degree siblings
8T19 x 2, 8T20, 8T21, 16T33, 16T52, 16T53, 32T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,12)( 8,11)( 9,14)(10,13)$ |
2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
2C | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7, 9)( 8,10)(11,13)(12,14)$ |
2D | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 7,12)( 8,11)( 9,14)(10,13)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,13)( 2,14)( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,16)(12,15)$ |
4A | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1,15, 6, 4)( 2,16, 5, 3)( 7,11)( 8,12)( 9,10)(13,14)$ |
4B1 | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1, 5)( 2, 6)( 3, 4)( 7,13,12,10)( 8,14,11, 9)(15,16)$ |
4B-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 7, 3, 9)( 2, 8, 4,10)( 5,11,15,13)( 6,12,16,14)$ |
4C1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11, 6, 8)( 2,12, 5, 7)( 3,10,16,13)( 4, 9,15,14)$ |
4C-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 9, 3, 7)( 2,10, 4, 8)( 5,13,15,11)( 6,14,16,12)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B1 | 4B-1 | 4C1 | 4C-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2D | 2D | 2C | 2A | 2C | |
Type | ||||||||||||
32.6.1a | R | |||||||||||
32.6.1b | R | |||||||||||
32.6.1c | R | |||||||||||
32.6.1d | R | |||||||||||
32.6.1e1 | C | |||||||||||
32.6.1e2 | C | |||||||||||
32.6.1f1 | C | |||||||||||
32.6.1f2 | C | |||||||||||
32.6.2a | R | |||||||||||
32.6.2b | R | |||||||||||
32.6.4a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed