Properties

Label 16T32
Order \(32\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $SD_{16}:C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $32$
Group :  $SD_{16}:C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $3$
Generators:  (1,15)(2,16)(3,5)(4,6)(7,8)(13,14), (1,14,15,12,2,13,16,11)(3,8,5,9,4,7,6,10), (1,6)(2,5)(3,15)(4,16)(7,12)(8,11)(9,14)(10,13)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 2

Degree 8: $D_4\times C_2$

Low degree siblings

16T50, 32T18

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $4$ $2$ $( 5, 6)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 3, 2, 4)( 5,15, 6,16)( 7,11, 8,12)( 9,14,10,13)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1, 3, 2, 4)( 5,16, 6,15)( 7,13, 8,14)( 9,12,10,11)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $2$ $2$ $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,11)( 8,12)( 9,13)(10,14)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 7, 2, 8)( 3,14, 4,13)( 5,11, 6,12)( 9,16,10,15)$
$ 8, 8 $ $4$ $8$ $( 1, 7,15,10, 2, 8,16, 9)( 3,14, 5,12, 4,13, 6,11)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1,11, 2,12)( 3,10, 4, 9)( 5, 7, 6, 8)(13,16,14,15)$
$ 8, 8 $ $4$ $8$ $( 1,11,16,13, 2,12,15,14)( 3,10, 6, 7, 4, 9, 5, 8)$
$ 4, 4, 4, 4 $ $2$ $4$ $( 1,15, 2,16)( 3, 5, 4, 6)( 7,10, 8, 9)(11,14,12,13)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 44]
Character table:   
      2  5  3  5  3  4  4  3  3  3  3  4

        1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
     2P 1a 1a 1a 2b 2b 1a 2b 4e 2b 4e 2b
     3P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
     5P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e
     7P 1a 2a 2b 4a 4b 2c 4c 8a 4d 8b 4e

X.1      1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1  1 -1  1  1 -1  1 -1  1  1
X.3      1 -1  1 -1  1  1  1 -1  1 -1  1
X.4      1 -1  1  1 -1 -1 -1  1  1 -1  1
X.5      1 -1  1  1 -1 -1  1 -1 -1  1  1
X.6      1  1  1 -1 -1 -1 -1 -1  1  1  1
X.7      1  1  1 -1 -1 -1  1  1 -1 -1  1
X.8      1  1  1  1  1  1 -1 -1 -1 -1  1
X.9      2  .  2  . -2  2  .  .  .  . -2
X.10     2  .  2  .  2 -2  .  .  .  . -2
X.11     4  . -4  .  .  .  .  .  .  .  .