Show commands:
Magma
magma: G := TransitiveGroup(16, 29);
Group invariants
Abstract group: | $C_2\times D_8$ | magma: IdentifyGroup(G);
| |
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $29$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,9)(2,10)(3,12)(4,11)(5,13)(6,14)(7,15)(8,16)$, $(1,12,5,16,10,4,14,7)(2,11,6,15,9,3,13,8)$, $(1,12)(2,11)(3,9)(4,10)(5,7)(6,8)(13,15)(14,16)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_{8}$ x 2, $D_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_{8}$ x 2, $D_4\times C_2$
Low degree siblings
16T29 x 3, 32T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,13)( 6,14)( 7,15)( 8,16)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,14)( 6,13)( 7,16)( 8,15)$ |
2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 7)( 6, 8)(13,15)(14,16)$ |
2F | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 3,15)( 4,16)( 5,14)( 6,13)( 7,12)( 8,11)$ |
2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3, 7)( 4, 8)( 5, 6)(11,16)(12,15)(13,14)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3,16,11, 7)( 4,15,12, 8)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 8,11,15)( 4, 7,12,16)$ |
8A1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 4, 5, 7,10,12,14,16)( 2, 3, 6, 8, 9,11,13,15)$ |
8A3 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1,12, 5,16,10, 4,14, 7)( 2,11, 6,15, 9, 3,13, 8)$ |
8B1 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1,11, 5,15,10, 3,14, 8)( 2,12, 6,16, 9, 4,13, 7)$ |
8B3 | $8^{2}$ | $2$ | $8$ | $14$ | $( 1, 3, 5, 8,10,11,14,15)( 2, 4, 6, 7, 9,12,13,16)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 8A1 | 8A3 | 8B1 | 8B3 | ||
Size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||
32.39.1a | R | ||||||||||||||
32.39.1b | R | ||||||||||||||
32.39.1c | R | ||||||||||||||
32.39.1d | R | ||||||||||||||
32.39.1e | R | ||||||||||||||
32.39.1f | R | ||||||||||||||
32.39.1g | R | ||||||||||||||
32.39.1h | R | ||||||||||||||
32.39.2a | R | ||||||||||||||
32.39.2b | R | ||||||||||||||
32.39.2c1 | R | ||||||||||||||
32.39.2c2 | R | ||||||||||||||
32.39.2d1 | R | ||||||||||||||
32.39.2d2 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed