Show commands:
Magma
magma: G := TransitiveGroup(16, 27);
Group invariants
Abstract group: | $C_4^2:C_2$ | magma: IdentifyGroup(G);
| |
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,5,9,14)(2,6,10,13)(3,16,12,7)(4,15,11,8)$, $(1,2)(3,12)(4,11)(7,15)(8,16)(9,10)$, $(1,4,2,3)(5,8,6,7)(9,11,10,12)(13,16,14,15)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ $16$: $Q_8:C_2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 8: $Q_8:C_2$ x 3
Low degree siblings
32T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$ |
2D | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3,12)( 4,11)( 7,15)( 8,16)( 9,10)$ |
4A1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6,10,14)( 2, 5, 9,13)( 3, 7,11,15)( 4, 8,12,16)$ |
4A-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,14,10, 6)( 2,13, 9, 5)( 3,15,11, 7)( 4,16,12, 8)$ |
4B1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8, 2, 7)( 3,14, 4,13)( 5,11, 6,12)( 9,15,10,16)$ |
4B-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,16, 2,15)( 3, 6, 4, 5)( 7,10, 8, 9)(11,14,12,13)$ |
4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,12, 9, 3)( 2,11,10, 4)( 5,15,14, 8)( 6,16,13, 7)$ |
4C-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 9,12)( 2, 4,10,11)( 5, 8,14,15)( 6, 7,13,16)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,13, 9, 6)( 2,14,10, 5)( 3, 8,12,15)( 4, 7,11,16)$ |
4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,15,10, 7)( 2,16, 9, 8)( 3,13,11, 5)( 4,14,12, 6)$ |
4F | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,15, 6,16)( 7,14, 8,13)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 2D | 4A1 | 4A-1 | 4B1 | 4B-1 | 4C1 | 4C-1 | 4D | 4E | 4F | ||
Size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2A | 2A | 2B | 2B | 2B | 2C | 2A | |
Type | |||||||||||||||
32.33.1a | R | ||||||||||||||
32.33.1b | R | ||||||||||||||
32.33.1c | R | ||||||||||||||
32.33.1d | R | ||||||||||||||
32.33.1e | R | ||||||||||||||
32.33.1f | R | ||||||||||||||
32.33.1g | R | ||||||||||||||
32.33.1h | R | ||||||||||||||
32.33.2a1 | C | ||||||||||||||
32.33.2a2 | C | ||||||||||||||
32.33.2b1 | C | ||||||||||||||
32.33.2b2 | C | ||||||||||||||
32.33.2c1 | C | ||||||||||||||
32.33.2c2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed