Show commands: Magma
Group invariants
Abstract group: | $Q_8 : C_2^2$ |
| |
Order: | $32=2^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $2$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $23$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,16)(2,15)(3,6)(4,5)(7,10)(8,9)(11,14)(12,13)$, $(1,5)(2,6)(3,15)(4,16)(7,12)(8,11)(9,14)(10,13)$, $(3,6)(4,5)(11,14)(12,13)$, $(1,2)(3,5)(4,6)(7,9)(8,10)(11,12)(13,14)(15,16)$, $(1,10)(2,9)(3,11)(4,12)(5,13)(6,14)(7,16)(8,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $C_2^3$ x 15 $16$: $C_2^4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 8: $C_2^3$, $Q_8:C_2^2$ x 2
Low degree siblings
8T22 x 6, 16T23 x 8, 32T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
2B | $2^{8}$ | $2$ | $2$ | $8$ | $( 1,11)( 2,12)( 3, 7)( 4, 8)( 5, 9)( 6,10)(13,15)(14,16)$ |
2C | $2^{8}$ | $2$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,14)( 4,13)( 5,12)( 6,11)( 7,16)( 8,15)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,16)( 4,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
2E | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 2)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,12)(13,14)(15,16)$ |
2F | $2^{8}$ | $2$ | $2$ | $8$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 7)( 6, 8)(13,16)(14,15)$ |
2G | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 1,16)( 2,15)( 7,10)( 8, 9)$ |
2H | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 9,15)(10,16)$ |
2I | $2^{8}$ | $2$ | $2$ | $8$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,12)(13,14)$ |
2J | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5,16)( 6,15)( 7,13)( 8,14)( 9,11)(10,12)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8,16, 9)( 2, 7,15,10)( 3,13, 6,12)( 4,14, 5,11)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4,16, 5)( 2, 3,15, 6)( 7,13,10,12)( 8,14, 9,11)$ |
4C | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,11,16,14)( 2,12,15,13)( 3,10, 6, 7)( 4, 9, 5, 8)$ |
4D | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6,16, 3)( 2, 5,15, 4)( 7,14,10,11)( 8,13, 9,12)$ |
4E | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,12,16,13)( 2,11,15,14)( 3, 8, 6, 9)( 4, 7, 5,10)$ |
4F | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 9,16, 8)( 2,10,15, 7)( 3,13, 6,12)( 4,14, 5,11)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | ||
Size | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | |
Type | ||||||||||||||||||
32.49.1a | R | |||||||||||||||||
32.49.1b | R | |||||||||||||||||
32.49.1c | R | |||||||||||||||||
32.49.1d | R | |||||||||||||||||
32.49.1e | R | |||||||||||||||||
32.49.1f | R | |||||||||||||||||
32.49.1g | R | |||||||||||||||||
32.49.1h | R | |||||||||||||||||
32.49.1i | R | |||||||||||||||||
32.49.1j | R | |||||||||||||||||
32.49.1k | R | |||||||||||||||||
32.49.1l | R | |||||||||||||||||
32.49.1m | R | |||||||||||||||||
32.49.1n | R | |||||||||||||||||
32.49.1o | R | |||||||||||||||||
32.49.1p | R | |||||||||||||||||
32.49.4a | R |
Regular extensions
Data not computed