Properties

Label 16T20
Degree $16$
Order $32$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $(C_2 \times Q_8):C_2$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(16, 20);
 

Group invariants

Abstract group:  $(C_2 \times Q_8):C_2$
magma: IdentifyGroup(G);
 
Order:  $32=2^{5}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  $2$
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $16$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $20$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $8$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,2,8)(3,6,4,5)(9,12,10,11)(13,15,14,16)$, $(1,2)(3,4)(5,6)(7,8)$, $(1,4,2,3)(5,7,6,8)(9,16,10,15)(11,13,12,14)$, $(1,16)(2,15)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 15
$4$:  $C_2^2$ x 35
$8$:  $C_2^3$ x 15
$16$:  $C_2^4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 4: $C_2^2$ x 7

Degree 8: $C_2^3$

Low degree siblings

16T20 x 4, 32T6

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{16}$ $1$ $1$ $0$ $()$
2A $2^{8}$ $1$ $2$ $8$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
2B $2^{8}$ $2$ $2$ $8$ $( 1,14)( 2,13)( 3,11)( 4,12)( 5,10)( 6, 9)( 7,16)( 8,15)$
2C $2^{8}$ $2$ $2$ $8$ $( 1, 9)( 2,10)( 3,15)( 4,16)( 5,14)( 6,13)( 7,11)( 8,12)$
2D $2^{8}$ $2$ $2$ $8$ $( 1,12)( 2,11)( 3,14)( 4,13)( 5,16)( 6,15)( 7, 9)( 8,10)$
2E $2^{8}$ $2$ $2$ $8$ $( 1,16)( 2,15)( 3, 9)( 4,10)( 5,11)( 6,12)( 7,13)( 8,14)$
2F $2^{4},1^{8}$ $2$ $2$ $4$ $(1,2)(3,4)(5,6)(7,8)$
4A $4^{4}$ $2$ $4$ $12$ $( 1,13, 2,14)( 3,12, 4,11)( 5, 9, 6,10)( 7,15, 8,16)$
4B $4^{4}$ $2$ $4$ $12$ $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)$
4C $4^{4}$ $2$ $4$ $12$ $( 1, 9, 2,10)( 3,15, 4,16)( 5,14, 6,13)( 7,11, 8,12)$
4D $4^{4}$ $2$ $4$ $12$ $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,14,10,13)(11,16,12,15)$
4E $4^{4}$ $2$ $4$ $12$ $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,12,10,11)(13,15,14,16)$
4F $4^{4}$ $2$ $4$ $12$ $( 1,16, 2,15)( 3, 9, 4,10)( 5,11, 6,12)( 7,13, 8,14)$
4G $4^{4}$ $2$ $4$ $12$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,16,10,15)(11,13,12,14)$
4H $4^{4}$ $2$ $4$ $12$ $( 1,11, 2,12)( 3,13, 4,14)( 5,15, 6,16)( 7,10, 8, 9)$
4I $4^{4}$ $2$ $4$ $12$ $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,11,10,12)(13,16,14,15)$
4J $4^{4}$ $2$ $4$ $12$ $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,16,10,15)(11,13,12,14)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 2F 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J
Size 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 P 1A 1A 1A 1A 1A 1A 1A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A
Type
32.50.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1i R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1j R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1k R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1l R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1m R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1n R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1o R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.1p R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32.50.4a S 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

magma: CharacterTable(G);
 

Regular extensions

Data not computed