Properties

Label 13T2
13T2 1 2 1->2 12 1->12 3 2->3 11 2->11 4 3->4 10 3->10 5 4->5 9 4->9 6 5->6 8 5->8 7 6->7 6->7 7->8 8->9 9->10 10->11 11->12 13 12->13 13->1
Degree $13$
Order $26$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $D_{13}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(13, 2);
 

Group invariants

Abstract group:  $D_{13}$
Copy content magma:IdentifyGroup(G);
 
Order:  $26=2 \cdot 13$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $13$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $D(13)=13:2$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10,11,12,13)$, $(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

26T2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{13}$ $1$ $1$ $0$ $()$
2A $2^{6},1$ $13$ $2$ $6$ $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)$
13A1 $13$ $2$ $13$ $12$ $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
13A2 $13$ $2$ $13$ $12$ $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)$
13A3 $13$ $2$ $13$ $12$ $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)$
13A4 $13$ $2$ $13$ $12$ $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)$
13A5 $13$ $2$ $13$ $12$ $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)$
13A6 $13$ $2$ $13$ $12$ $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)$

Malle's constant $a(G)$:     $1/6$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 13A1 13A2 13A3 13A4 13A5 13A6
Size 1 13 2 2 2 2 2 2
2 P 1A 1A 13A2 13A4 13A6 13A5 13A3 13A1
13 P 1A 2A 13A3 13A6 13A4 13A1 13A2 13A5
Type
26.1.1a R 1 1 1 1 1 1 1 1
26.1.1b R 1 1 1 1 1 1 1 1
26.1.2a1 R 2 0 ζ136+ζ136 ζ135+ζ135 ζ133+ζ133 ζ131+ζ13 ζ132+ζ132 ζ134+ζ134
26.1.2a2 R 2 0 ζ135+ζ135 ζ132+ζ132 ζ134+ζ134 ζ133+ζ133 ζ136+ζ136 ζ131+ζ13
26.1.2a3 R 2 0 ζ134+ζ134 ζ131+ζ13 ζ132+ζ132 ζ135+ζ135 ζ133+ζ133 ζ136+ζ136
26.1.2a4 R 2 0 ζ133+ζ133 ζ134+ζ134 ζ135+ζ135 ζ136+ζ136 ζ131+ζ13 ζ132+ζ132
26.1.2a5 R 2 0 ζ132+ζ132 ζ136+ζ136 ζ131+ζ13 ζ134+ζ134 ζ135+ζ135 ζ133+ζ133
26.1.2a6 R 2 0 ζ131+ζ13 ζ133+ζ133 ζ136+ζ136 ζ132+ζ132 ζ134+ζ134 ζ135+ζ135

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed