Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-3994x+27476\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-3994xz^2+27476z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-5176899x+1359570366\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(-20, 326\right)\) |
$\hat{h}(P)$ | ≈ | $0.37020301253936637249609312433$ |
Integral points
\( \left(-28, 358\right) \), \( \left(-28, -330\right) \), \( \left(-20, 326\right) \), \( \left(-20, -306\right) \), \( \left(59, 10\right) \), \( \left(59, -69\right) \), \( \left(6853, 563912\right) \), \( \left(6853, -570765\right) \)
Invariants
Conductor: | \( 7742 \) | = | $2 \cdot 7^{2} \cdot 79$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $3712354899904 $ | = | $2^{6} \cdot 7^{6} \cdot 79^{3} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{59914169497}{31554496} \) | = | $2^{-6} \cdot 7^{3} \cdot 13^{3} \cdot 43^{3} \cdot 79^{-3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.1035069995753871213282740656\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.13055192504773046877559769388\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.967983438848399\dots$ | |||
Szpiro ratio: | $4.075267721173161\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.37020301253936637249609312433\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.69093851586955202830007333230\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 6 $ = $ 2\cdot1\cdot3 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 1.5347251203263217653387456236 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.534725120 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.690939 \cdot 0.370203 \cdot 6}{1^2} \approx 1.534725120$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 15120 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$79$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs | 3.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 19908 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 79 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 15653 & 14238 \\ 11214 & 14113 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19891 & 18 \\ 19890 & 19 \end{array}\right),\left(\begin{array}{rr} 9955 & 14238 \\ 7119 & 8695 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4621 & 14238 \\ 19593 & 11887 \end{array}\right),\left(\begin{array}{rr} 17063 & 0 \\ 0 & 19907 \end{array}\right)$.
The torsion field $K:=\Q(E[19908])$ is a degree-$200923996815360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/19908\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 3871 = 7^{2} \cdot 79 \) |
$3$ | good | $2$ | \( 49 = 7^{2} \) |
$7$ | additive | $26$ | \( 158 = 2 \cdot 79 \) |
$79$ | split multiplicative | $80$ | \( 98 = 2 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 7742.b
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 158.b2, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/3\Z\) | not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/3\Z\) | 2.0.7.1-24964.5-b1 |
$3$ | 3.3.316.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.6.31554496.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.6.924766416.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.34250608.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.855192924161485056.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.74480276631114450998648208731279928449003802624.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.923825701716871234737684694141398098943.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | ord | add | ss | ord | ss | ord | ord | ss | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | 2 | 1 | 1 | - | 1,1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 2 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.