Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-20230708x+30430819912\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-20230708xz^2+30430819912z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1638687375x+22179151653750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2158, 253050)$ | $5.6218423291091598110123993243$ | $\infty$ |
Integral points
\((-2158,\pm 253050)\)
Invariants
Conductor: | $N$ | = | \( 50700 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $130053825029688300000000$ | = | $2^{8} \cdot 3^{13} \cdot 5^{8} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{11225615440}{1594323} \) | = | $2^{4} \cdot 3^{-13} \cdot 5 \cdot 13^{4} \cdot 17^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1610168036583854295001320232$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.084006163312002850547520574298$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.08097832103641$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.730438122920643$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.6218423291091598110123993243$ |
|
Real period: | $\Omega$ | ≈ | $0.099988854896271430010249719179$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 9 $ = $ 3\cdot1\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.0590941920551115460792538495 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.059094192 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.099989 \cdot 5.621842 \cdot 9}{1^2} \\ & \approx 5.059094192\end{aligned}$$
Modular invariants
Modular form 50700.2.a.m
For more coefficients, see the Downloads section to the right.
Modular degree: | 3650400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $1$ | $I_{13}$ | nonsplit multiplicative | 1 | 1 | 13 | 13 |
$5$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$13$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$13$ | 13S4 | 13.91.3.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $182$, genus $10$, and generators
$\left(\begin{array}{rr} 105 & 104 \\ 52 & 105 \end{array}\right),\left(\begin{array}{rr} 53 & 0 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 92 & 117 \\ 91 & 131 \end{array}\right),\left(\begin{array}{rr} 79 & 78 \\ 78 & 79 \end{array}\right),\left(\begin{array}{rr} 151 & 38 \\ 44 & 71 \end{array}\right),\left(\begin{array}{rr} 91 & 6 \\ 108 & 91 \end{array}\right),\left(\begin{array}{rr} 27 & 14 \\ 142 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 78 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 125 & 98 \\ 39 & 5 \end{array}\right),\left(\begin{array}{rr} 31 & 52 \\ 9 & 47 \end{array}\right),\left(\begin{array}{rr} 155 & 0 \\ 0 & 155 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 52 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 78 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$663552$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 12675 = 3 \cdot 5^{2} \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 16900 = 2^{2} \cdot 5^{2} \cdot 13^{2} \) |
$5$ | additive | $14$ | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 100 = 2^{2} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 50700l consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 50700u1, its twist by $65$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.50700.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.6.30845880000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.50594954670000.7 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | add | ss | ord | add | ss | ss | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 5 | - | 1,1 | 1 | - | 1,1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | - | 0,0 | 0 | - | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.