Properties

Label 4896.m
Number of curves $1$
Conductor $4896$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 4896.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4896.m1 4896a1 \([0, 0, 0, -1992, -97072]\) \(-292754944/1193859\) \(-3564843872256\) \([]\) \(7680\) \(1.0938\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4896.m1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4896.m do not have complex multiplication.

Modular form 4896.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} - 5 q^{11} - 5 q^{13} - q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display