Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-5626x-162894\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-5626xz^2-162894z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7291323x-7578108522\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(771/4, 18699/8)$ | $6.8507132627278462328726310851$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 430 \) | = | $2 \cdot 5 \cdot 43$ |
|
Discriminant: | $\Delta$ | = | $-167968750$ | = | $-1 \cdot 2 \cdot 5^{9} \cdot 43 $ |
|
j-invariant: | $j$ | = | \( -\frac{19693718244927649}{167968750} \) | = | $-1 \cdot 2^{-1} \cdot 5^{-9} \cdot 13^{3} \cdot 43^{-1} \cdot 20773^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.74661433266009390227304026375$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.74661433266009390227304026375$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9763400738937278$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.187404328459464$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8507132627278462328726310851$ |
|
Real period: | $\Omega$ | ≈ | $0.27562525128768900136947838162$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.8882295645392664198477384608 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.888229565 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.275625 \cdot 6.850713 \cdot 1}{1^2} \\ & \approx 1.888229565\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 648 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
$43$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 9.24.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15480 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 43 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11611 & 7758 \\ 0 & 13331 \end{array}\right),\left(\begin{array}{rr} 3871 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 7731 & 15472 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 7924 & 9 \\ 5391 & 15460 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 3087 & 15472 \end{array}\right),\left(\begin{array}{rr} 15463 & 18 \\ 15462 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[15480])$ is a degree-$66437905121280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 215 = 5 \cdot 43 \) |
$3$ | good | $2$ | \( 86 = 2 \cdot 43 \) |
$5$ | nonsplit multiplicative | $6$ | \( 86 = 2 \cdot 43 \) |
$43$ | split multiplicative | $44$ | \( 10 = 2 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 430.c
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.1720.1 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.199692.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.5088448000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.119630684592.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.67292260083.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.582301872.8 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.79876800.1 | \(\Z/6\Z\) | not in database |
$9$ | 9.1.5478610659757138944000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.101097475558595708335331100988763123712.2 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.810409718552522938005367824458078748672000000.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.2307768300096832897679348218866950811648000000.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.172805812571363241617723039167807488000000.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.20650440235708732642507150489894747373568000000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | split | ord |
$\lambda$-invariant(s) | 2 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
$\mu$-invariant(s) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.