Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+8792x+140912\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+8792xz^2+140912z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+712125x+104861250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(68, 1024)$ | $0.97348814780971301279031510054$ | $\infty$ |
Integral points
\((-14,\pm 122)\), \((68,\pm 1024)\)
Invariants
Conductor: | $N$ | = | \( 400 \) | = | $2^{4} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $-52428800000000$ | = | $-1 \cdot 2^{27} \cdot 5^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{46969655}{32768} \) | = | $2^{-15} \cdot 5 \cdot 211^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3210726849671688096614090265$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.44503310388217674948966265044$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0629647337743247$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.485606561389225$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.97348814780971301279031510054$ |
|
Real period: | $\Omega$ | ≈ | $0.39939334765616992615588584260$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.5552187610293025813988289082 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.555218761 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.399393 \cdot 0.973488 \cdot 4}{1^2} \\ & \approx 1.555218761\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 720 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{19}^{*}$ | additive | -1 | 4 | 27 | 15 |
$5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 8.2.0.1 |
$3$ | 3B | 3.4.0.1 |
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 46 & 105 \\ 45 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 90 \\ 40 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 42 \\ 90 & 61 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 60 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 72 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 80 \\ 40 & 81 \end{array}\right),\left(\begin{array}{rr} 39 & 70 \\ 80 & 23 \end{array}\right),\left(\begin{array}{rr} 61 & 90 \\ 45 & 91 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 30 & 1 \end{array}\right),\left(\begin{array}{rr} 89 & 30 \\ 105 & 29 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 60 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 25 = 5^{2} \) |
$5$ | additive | $14$ | \( 16 = 2^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 5 and 15.
Its isogeny class 400c
consists of 4 curves linked by isogenies of
degrees dividing 15.
Twists
The minimal quadratic twist of this elliptic curve is 50b2, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | 2.2.12.1-1250.1-b4 |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/5\Z\) | not in database |
$3$ | 3.1.200.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-5})\) | \(\Z/15\Z\) | not in database |
$6$ | 6.0.320000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.29160000.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.17280000.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.3200000.1 | \(\Z/10\Z\) | not in database |
$12$ | 12.2.52428800000000.2 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.7652750400000000.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.4777574400000000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.163840000000000.4 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$12$ | deg 12 | \(\Z/15\Z\) | not in database |
$12$ | deg 12 | \(\Z/30\Z\) | not in database |
$18$ | 18.6.31234447298506752000000000000.3 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.101559956668416000000000000.1 | \(\Z/6\Z\) | not in database |
$20$ | 20.4.4882812500000000000000000000.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 3 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.