Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-6910x-232261\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-6910xz^2-232261z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-8955387x-10702030122\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 294 \) | = | $2 \cdot 3 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-1613775332736$ | = | $-1 \cdot 2^{7} \cdot 3^{7} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( -\frac{6329617441}{279936} \) | = | $-1 \cdot 2^{-7} \cdot 3^{-7} \cdot 7 \cdot 967^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1074316380143106234153900780$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18984179468923157998817841763$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.032335220248665$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.722775443275639$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.26114291828811105870441034589$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 7 $ = $ 7\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.8280004280167774109308724213 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.828000428 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.261143 \cdot 1.000000 \cdot 7}{1^2} \\ & \approx 1.828000428\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 588 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$3$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$7$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.1.6 | 7.48.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 127 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 14 \\ 119 & 99 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 155 & 14 \\ 154 & 15 \end{array}\right),\left(\begin{array}{rr} 125 & 70 \\ 0 & 53 \end{array}\right),\left(\begin{array}{rr} 85 & 14 \\ 91 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$1548288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 147 = 3 \cdot 7^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 98 = 2 \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 294a
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 294b2, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/7\Z\) | 2.0.7.1-1764.2-c1 |
$3$ | 3.1.1176.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.33191424.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.9680832.1 | \(\Z/14\Z\) | not in database |
$8$ | 8.2.6805279152.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
$16$ | deg 16 | \(\Z/21\Z\) | not in database |
$21$ | 21.3.378818692265664781682717625943.3 | \(\Z/7\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | add | ord | ss | ord | ord | ord | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 1 | 0 | 4 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.