Properties

Label 26.a
Number of curves 3
Conductor \(26\)
CM False
Rank \(0\)
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("26.a1")
sage: E.isogeny_class()

Elliptic curves in class 26.a

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
26.a1 26a2 [1, 0, 1, -460, -3830] 1 6  
26.a2 26a1 [1, 0, 1, -5, -8] 3 2 \(\Gamma_0(N)\)-optimal
26.a3 26a3 [1, 0, 1, 0, 0] 3 6  

Rank

sage: E.rank()

The elliptic curves in class 26.a have rank \(0\).

Modular form 26.2.1.a

sage: E.q_eigenform(10)
\( q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} - q^{7} - q^{8} - 2q^{9} + O(q^{10}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)