Properties

Label 24a
Number of curves $6$
Conductor $24$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 24a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 24a do not have complex multiplication.

Modular form 24.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 2 & 2 & 4 & 4 \\ 2 & 1 & 4 & 4 & 2 & 2 \\ 2 & 4 & 1 & 4 & 8 & 8 \\ 2 & 4 & 4 & 1 & 8 & 8 \\ 4 & 2 & 8 & 8 & 1 & 4 \\ 4 & 2 & 8 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 24a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
24.a4 24a1 \([0, -1, 0, -4, 4]\) \(35152/9\) \(2304\) \([2, 4]\) \(1\) \(-0.64535\) \(\Gamma_0(N)\)-optimal
24.a3 24a2 \([0, -1, 0, -24, -36]\) \(1556068/81\) \(82944\) \([2, 2]\) \(2\) \(-0.29878\)  
24.a2 24a3 \([0, -1, 0, -64, 220]\) \(28756228/3\) \(3072\) \([4]\) \(2\) \(-0.29878\)  
24.a5 24a4 \([0, -1, 0, 1, 0]\) \(2048/3\) \(-48\) \([4]\) \(2\) \(-0.99193\)  
24.a1 24a5 \([0, -1, 0, -384, -2772]\) \(3065617154/9\) \(18432\) \([2]\) \(4\) \(0.047795\)  
24.a6 24a6 \([0, -1, 0, 16, -180]\) \(207646/6561\) \(-13436928\) \([2]\) \(4\) \(0.047795\)