Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-2680x-233803\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-2680xz^2-233803z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-42875x-15006250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1229/16, 3635/64)$ | $2.5639934308414382459090822689$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 2450 \) | = | $2 \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-22518753906250$ | = | $-1 \cdot 2 \cdot 5^{9} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( -\frac{189}{2} \) | = | $-1 \cdot 2^{-1} \cdot 3^{3} \cdot 7$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2442318862374103886005979097$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2601199807917070957535400858$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.917369764916668$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.901858297365557$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5639934308414382459090822689$ |
|
Real period: | $\Omega$ | ≈ | $0.28779650559404950310247313070$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot2\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.4274500985735849593719567229 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.427450099 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.287797 \cdot 2.563993 \cdot 6}{1^2} \\ & \approx 4.427450099\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 5040 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$13$ | 13B | 13.14.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $336$, genus $9$, and generators
$\left(\begin{array}{rr} 2063 & 3614 \\ 1300 & 2447 \end{array}\right),\left(\begin{array}{rr} 1834 & 13 \\ 2717 & 3628 \end{array}\right),\left(\begin{array}{rr} 911 & 1846 \\ 0 & 1471 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 871 & 1431 \end{array}\right),\left(\begin{array}{rr} 2904 & 3627 \\ 2093 & 3492 \end{array}\right),\left(\begin{array}{rr} 14 & 13 \\ 1807 & 3628 \end{array}\right),\left(\begin{array}{rr} 3615 & 26 \\ 3614 & 27 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$115935805440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 245 = 5 \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 98 = 2 \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
13.
Its isogeny class 2450bb
consists of 2 curves linked by isogenies of
degree 13.
Twists
The minimal quadratic twist of this elliptic curve is 2450o1, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.1960.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.153664000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.1312746750000.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.11259376953125.1 | \(\Z/13\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1,1 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 |
$\mu$-invariant(s) | 0 | 0,0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.