Properties

Label 1904e
Number of curves $2$
Conductor $1904$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1904e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1904.a2 1904e1 \([0, 1, 0, -288, 1780]\) \(647214625/3332\) \(13647872\) \([2]\) \(384\) \(0.21497\) \(\Gamma_0(N)\)-optimal
1904.a1 1904e2 \([0, 1, 0, -448, -588]\) \(2433138625/1387778\) \(5684338688\) \([2]\) \(768\) \(0.56154\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1904e have rank \(1\).

Complex multiplication

The elliptic curves in class 1904e do not have complex multiplication.

Modular form 1904.2.a.e

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{7} + q^{9} + 2 q^{11} - 2 q^{13} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.