This isogeny class and its quadratic twist by $\Q(\sqrt{-3})$ are the ones of minimal conductor with a $13$-isogeny.
Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-x^2-912x+10919\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-x^2z-912xz^2+10919z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1182384x+495261648\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 147 \) | = | $3 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-78121827$ | = | $-1 \cdot 3^{13} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{1713910976512}{1594323} \) | = | $-1 \cdot 2^{12} \cdot 3^{-13} \cdot 7 \cdot 17^{3} \cdot 23^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.43738716231171606600175856885$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.11306880413583051515086644494$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1059237401535138$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.42493909590508$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $1.9200537453490419433285021703$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.9200537453490419433285021703 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.920053745 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.920054 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 1.920053745\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 78 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{13}$ | nonsplit multiplicative | 1 | 1 | 13 | 13 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$13$ | 13B.4.2 | 13.28.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \), index $336$, genus $9$, and generators
$\left(\begin{array}{rr} 485 & 26 \\ 156 & 101 \end{array}\right),\left(\begin{array}{rr} 15 & 26 \\ 130 & 287 \end{array}\right),\left(\begin{array}{rr} 14 & 23 \\ 325 & 339 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 26 & 1 \end{array}\right),\left(\begin{array}{rr} 365 & 26 \\ 377 & 339 \end{array}\right),\left(\begin{array}{rr} 1 & 26 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 521 & 26 \\ 520 & 27 \end{array}\right)$.
The torsion field $K:=\Q(E[546])$ is a degree-$45287424$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/546\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | nonsplit multiplicative | $4$ | \( 49 = 7^{2} \) |
$7$ | additive | $14$ | \( 3 \) |
$13$ | good | $2$ | \( 49 = 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
13.
Its isogeny class 147c
consists of 2 curves linked by isogenies of
degree 13.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.588.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1037232.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.20841167403.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.12.506240953553539690213.1 | \(\Z/13\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | nonsplit | ord | add | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 0,1 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0,0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.