Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3+15006\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+15006z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+960400\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 122)$ | $0$ | $3$ |
Integral points
\( \left(0, 122\right) \), \( \left(0, -123\right) \)
Invariants
Conductor: | $N$ | = | \( 11025 \) | = | $3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-97281016875$ | = | $-1 \cdot 3^{3} \cdot 5^{4} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( 0 \) | = | $0$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.78728838058723183612943038675$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691959$ |
|
||
$abc$ quality: | $Q$ | ≈ | $$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.519109230962674$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.84699395768435610447138819755$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ 2\cdot3\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.6939879153687122089427763951 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.693987915 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.846994 \cdot 1.000000 \cdot 18}{3^2} \\ & \approx 1.693987915\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 7056 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$7$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 27.648.18.1 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
$3$ | additive | $6$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 225 = 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 11025.y
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 11025.t1, its twist by $-7$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $30625$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.14700.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.648270000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.3281866875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$9$ | 9.3.26377102494421875.12 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/21\Z\) | not in database |
$18$ | 18.0.2087254608003710100796471435546875.5 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.144784752906623254803000000000000.13 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | ss | add | add | add |
$\lambda$-invariant(s) | ? | - | - | - |
$\mu$-invariant(s) | ? | - | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.