Properties

Label 6.6.592661.1-49.2-b1
Base field 6.6.592661.1
Conductor norm \( 49 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.592661.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 5 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 5, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 5, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 5, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+5a^{2}+4a-3\right){x}{y}+\left(2a^{5}-2a^{4}-9a^{3}+9a^{2}+5a-6\right){y}={x}^{3}+\left(2a^{5}-3a^{4}-9a^{3}+11a^{2}+5a-3\right){x}^{2}+\left(-150a^{5}+288a^{4}+503a^{3}-1083a^{2}+192a+167\right){x}+1413a^{5}-2764a^{4}-4519a^{3}+10175a^{2}-2425a-1163\)
sage: E = EllipticCurve([K([-3,4,5,-5,-1,1]),K([-3,5,11,-9,-3,2]),K([-6,5,9,-9,-2,2]),K([167,192,-1083,503,288,-150]),K([-1163,-2425,10175,-4519,-2764,1413])])
 
gp: E = ellinit([Polrev([-3,4,5,-5,-1,1]),Polrev([-3,5,11,-9,-3,2]),Polrev([-6,5,9,-9,-2,2]),Polrev([167,192,-1083,503,288,-150]),Polrev([-1163,-2425,10175,-4519,-2764,1413])], K);
 
magma: E := EllipticCurve([K![-3,4,5,-5,-1,1],K![-3,5,11,-9,-3,2],K![-6,5,9,-9,-2,2],K![167,192,-1083,503,288,-150],K![-1163,-2425,10175,-4519,-2764,1413]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((a^5-a^4-4a^3+4a^2+3a-1)\) = \((a^4-4a^2+a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 49 \) = \(7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-5a^5+12a^4+16a^3-50a^2+25$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-5a^5+12a^4+16a^3-50a^2+25)\) = \((a^4-4a^2+a+2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -5764801 \) = \(-7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -21437955273398086628814342060 a^{5} - 8296492504833651562385453152 a^{4} + 95682539786756414754531486072 a^{3} + 46959878613528243860092427239 a^{2} - 42056416375390440919728940937 a - 15456346448131269056429661858 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 1081.5677609031029303584856238161150981 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.40492 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.404920000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1081.567761 \cdot 1 \cdot 1 } { {1^2 \cdot 769.844790} } \approx 1.404916648$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^4-4a^2+a+2)\) \(7\) \(1\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.6.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 49.2-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.