Base field 6.6.434581.1
Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
trivial
Invariants
Conductor: | $\frak{N}$ | = | \((2a^5-6a^4-4a^3+17a^2-a-6)\) | = | \((2a^5-6a^4-4a^3+17a^2-a-6)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 71 \) | = | \(71\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $5a^5-14a^4-8a^3+33a^2-6a-16$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((5a^5-14a^4-8a^3+33a^2-6a-16)\) | = | \((2a^5-6a^4-4a^3+17a^2-a-6)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 357911 \) | = | \(71^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( -\frac{25415776248234932727}{357911} a^{5} + \frac{33644549177505288315}{357911} a^{4} + \frac{124407707776619205840}{357911} a^{3} - \frac{42935695592915487066}{357911} a^{2} - \frac{130674592083511357736}{357911} a - \frac{37564287471550457576}{357911} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 9.1228616743419730844511926319767364532 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.12094 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 81 \) (rounded) |
BSD formula
$\displaystyle 1.120940000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 81 \cdot 9.122862 \cdot 1 \cdot 1 } { {1^2 \cdot 659.227578} } \approx 1.120935804$
Local data at primes of bad reduction
This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2a^5-6a^4-4a^3+17a^2-a-6)\) | \(71\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class
71.1-b
consists of curves linked by isogenies of
degree 3.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.