Properties

Base field 6.6.434581.1
Label 6.6.434581.1-71.1-a3
Conductor \((71,2 a^{5} - 6 a^{4} - 4 a^{3} + 17 a^{2} - a - 6)\)
Conductor norm \( 71 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 2*x^5 - 4*x^4 + 5*x^3 + 4*x^2 - 2*x - 1)
gp (2.8): K = nfinit(a^6 - 2*a^5 - 4*a^4 + 5*a^3 + 4*a^2 - 2*a - 1);

Weierstrass equation

\( y^2 + \left(a^{5} - 2 a^{4} - 4 a^{3} + 5 a^{2} + 3 a - 2\right) x y + \left(2 a^{5} - 4 a^{4} - 6 a^{3} + 7 a^{2} + 2 a - 1\right) y = x^{3} + \left(a^{5} - 3 a^{4} - a^{3} + 6 a^{2} - 3 a - 2\right) x^{2} + \left(10 a^{5} - 30 a^{4} - 10 a^{3} + 51 a^{2} - a - 14\right) x - 15 a^{5} + 55 a^{4} - 31 a^{3} - 39 a^{2} + 17 a + 6 \)
magma: E := ChangeRing(EllipticCurve([a^5 - 2*a^4 - 4*a^3 + 5*a^2 + 3*a - 2, a^5 - 3*a^4 - a^3 + 6*a^2 - 3*a - 2, 2*a^5 - 4*a^4 - 6*a^3 + 7*a^2 + 2*a - 1, 10*a^5 - 30*a^4 - 10*a^3 + 51*a^2 - a - 14, -15*a^5 + 55*a^4 - 31*a^3 - 39*a^2 + 17*a + 6]),K);
sage: E = EllipticCurve(K, [a^5 - 2*a^4 - 4*a^3 + 5*a^2 + 3*a - 2, a^5 - 3*a^4 - a^3 + 6*a^2 - 3*a - 2, 2*a^5 - 4*a^4 - 6*a^3 + 7*a^2 + 2*a - 1, 10*a^5 - 30*a^4 - 10*a^3 + 51*a^2 - a - 14, -15*a^5 + 55*a^4 - 31*a^3 - 39*a^2 + 17*a + 6])
gp (2.8): E = ellinit([a^5 - 2*a^4 - 4*a^3 + 5*a^2 + 3*a - 2, a^5 - 3*a^4 - a^3 + 6*a^2 - 3*a - 2, 2*a^5 - 4*a^4 - 6*a^3 + 7*a^2 + 2*a - 1, 10*a^5 - 30*a^4 - 10*a^3 + 51*a^2 - a - 14, -15*a^5 + 55*a^4 - 31*a^3 - 39*a^2 + 17*a + 6],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((71,2 a^{5} - 6 a^{4} - 4 a^{3} + 17 a^{2} - a - 6)\) = \( \left(2 a^{5} - 6 a^{4} - 4 a^{3} + 17 a^{2} - a - 6\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 71 \) = \( 71 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((128100283921,a^{4} - 2 a^{3} - 3 a^{2} + 3 a + 46280301066,a^{5} - 3 a^{4} - 2 a^{3} + 8 a^{2} + 49606904935,a + 109105511095,a^{5} - 2 a^{4} - 3 a^{3} + 3 a^{2} + a + 96135998227,a^{5} - 2 a^{4} - 3 a^{3} + 4 a^{2} + 24172021792)\) = \( \left(2 a^{5} - 6 a^{4} - 4 a^{3} + 17 a^{2} - a - 6\right)^{6} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 128100283921 \) = \( 71^{6} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{14623190787592690023}{128100283921} a^{5} + \frac{9262831648934631201}{128100283921} a^{4} - \frac{34215233218956422760}{128100283921} a^{3} - \frac{17202576339060202666}{128100283921} a^{2} + \frac{13171892585884276804}{128100283921} a + \frac{5541195868726527748}{128100283921} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-\frac{1}{2} a^{5} + \frac{7}{4} a^{4} - \frac{1}{2} a^{3} - \frac{11}{4} a^{2} + \frac{7}{4} a + \frac{1}{2} : -\frac{7}{8} a^{5} + \frac{3}{2} a^{4} + 3 a^{3} - \frac{21}{8} a^{2} - \frac{7}{8} a - \frac{1}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(2 a^{5} - 6 a^{4} - 4 a^{3} + 17 a^{2} - a - 6\right) \) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.