Properties

Label 6.6.434581.1-43.2-a1
Base field 6.6.434581.1
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.434581.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 4 x^{4} + 5 x^{3} + 4 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 4, 5, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 4, 5, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 4, 5, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-5a^{3}+a^{2}+3a\right){x}{y}+\left(2a^{5}-5a^{4}-5a^{3}+12a^{2}-3\right){y}={x}^{3}+\left(a^{5}-4a^{4}+11a^{2}-3a-4\right){x}^{2}+\left(-3a^{5}+2a^{4}+16a^{3}+2a^{2}-9a-1\right){x}+9a^{5}-24a^{4}-27a^{3}+71a^{2}+19a-34\)
sage: E = EllipticCurve([K([0,3,1,-5,-1,1]),K([-4,-3,11,0,-4,1]),K([-3,0,12,-5,-5,2]),K([-1,-9,2,16,2,-3]),K([-34,19,71,-27,-24,9])])
 
gp: E = ellinit([Polrev([0,3,1,-5,-1,1]),Polrev([-4,-3,11,0,-4,1]),Polrev([-3,0,12,-5,-5,2]),Polrev([-1,-9,2,16,2,-3]),Polrev([-34,19,71,-27,-24,9])], K);
 
magma: E := EllipticCurve([K![0,3,1,-5,-1,1],K![-4,-3,11,0,-4,1],K![-3,0,12,-5,-5,2],K![-1,-9,2,16,2,-3],K![-34,19,71,-27,-24,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-3a^4-a^3+7a^2-3a-4)\) = \((a^5-3a^4-a^3+7a^2-3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-41a^5+93a^4+109a^3-171a^2-18a)\) = \((a^5-3a^4-a^3+7a^2-3a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6321363049 \) = \(43^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{25867021722146251}{6321363049} a^{5} - \frac{89822684726406532}{6321363049} a^{4} + \frac{29268467321015368}{6321363049} a^{3} + \frac{85250804762932381}{6321363049} a^{2} - \frac{22977539272511937}{6321363049} a - \frac{17388365353799698}{6321363049} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 446.03344625319121721813031344665341055 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.35320 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-3a^4-a^3+7a^2-3a-4)\) \(43\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 43.2-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.