Properties

Label 6.6.300125.1-71.4-c2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-8a^{5}+2a^{4}+58a^{3}+27a^{2}-38a-11\right){x}{y}+\left(-a^{5}+8a^{3}+5a^{2}-7a-2\right){y}={x}^{3}+\left(-a^{5}+8a^{3}+5a^{2}-9a-4\right){x}^{2}+\left(24a^{5}-21a^{4}-145a^{3}-27a^{2}+88a+6\right){x}+11a^{5}-92a^{4}+101a^{3}+251a^{2}-84a-106\)
sage: E = EllipticCurve([K([-11,-38,27,58,2,-8]),K([-4,-9,5,8,0,-1]),K([-2,-7,5,8,0,-1]),K([6,88,-27,-145,-21,24]),K([-106,-84,251,101,-92,11])])
 
gp: E = ellinit([Polrev([-11,-38,27,58,2,-8]),Polrev([-4,-9,5,8,0,-1]),Polrev([-2,-7,5,8,0,-1]),Polrev([6,88,-27,-145,-21,24]),Polrev([-106,-84,251,101,-92,11])], K);
 
magma: E := EllipticCurve([K![-11,-38,27,58,2,-8],K![-4,-9,5,8,0,-1],K![-2,-7,5,8,0,-1],K![6,88,-27,-145,-21,24],K![-106,-84,251,101,-92,11]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a^5-2a^4-43a^3-17a^2+29a+5)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-49a^5+13a^4+353a^3+159a^2-222a-58)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -357911 \) = \(-71^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{10394847966890026874}{357911} a^{5} + \frac{2257127006944677009}{357911} a^{4} + \frac{74885814522798141547}{357911} a^{3} + \frac{37038415740266095494}{357911} a^{2} - \frac{44705744028911194336}{357911} a - \frac{13569453503150492597}{357911} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(5 a^{5} + a^{4} - 39 a^{3} - 29 a^{2} + 24 a + 14 : 10 a^{5} - 3 a^{4} - 72 a^{3} - 30 a^{2} + 48 a + 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 34.907982152988347661509028368625290502 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((6a^5-2a^4-43a^3-17a^2+29a+5)\) \(71\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.4-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.