Properties

Label 6.6.300125.1-64.1-b1
Base field 6.6.300125.1
Conductor norm \( 64 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-10a-2\right){x}{y}+\left(-4a^{5}+a^{4}+29a^{3}+13a^{2}-18a-5\right){y}={x}^{3}+\left(7a^{5}-2a^{4}-50a^{3}-22a^{2}+32a+10\right){x}^{2}+\left(11a^{5}-3a^{4}-79a^{3}-34a^{2}+51a+16\right){x}+7a^{5}+a^{4}-55a^{3}-37a^{2}+47a+8\)
sage: E = EllipticCurve([K([-2,-10,4,14,1,-2]),K([10,32,-22,-50,-2,7]),K([-5,-18,13,29,1,-4]),K([16,51,-34,-79,-3,11]),K([8,47,-37,-55,1,7])])
 
gp: E = ellinit([Polrev([-2,-10,4,14,1,-2]),Polrev([10,32,-22,-50,-2,7]),Polrev([-5,-18,13,29,1,-4]),Polrev([16,51,-34,-79,-3,11]),Polrev([8,47,-37,-55,1,7])], K);
 
magma: E := EllipticCurve([K![-2,-10,4,14,1,-2],K![10,32,-22,-50,-2,7],K![-5,-18,13,29,1,-4],K![16,51,-34,-79,-3,11],K![8,47,-37,-55,1,7]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((2)\) = \((2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 64 \) = \(64\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-256$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-256)\) = \((2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 281474976710656 \) = \(64^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{1323}{256} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 314.52135060926873611104817779637933617 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.14823 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.148230000 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 314.521351 \cdot 1 \cdot 2 } { {1^2 \cdot 547.836654} } \approx 1.148230401$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(64\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 64.1-b consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{5}) \) a curve with conductor norm 9604 (not in the database)