Properties

Label 6.6.1259712.1-27.1-g1
Base field \(\Q(\zeta_{36})^+\)
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{36})^+\)

Generator \(a\), with minimal polynomial \( x^{6} - 6 x^{4} + 9 x^{2} - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 0, 9, 0, -6, 0, 1]))
 
gp: K = nfinit(Polrev([-3, 0, 9, 0, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 9, 0, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-4a^{3}+a\right){x}{y}+\left(a^{3}+a^{2}-3a-1\right){y}={x}^{3}+\left(-a^{5}+a^{4}+6a^{3}-4a^{2}-6a+3\right){x}^{2}+\left(-8a^{5}+43a^{3}+6a^{2}-43a-15\right){x}+15a^{5}+7a^{4}-80a^{3}-40a^{2}+87a+54\)
sage: E = EllipticCurve([K([0,1,0,-4,0,1]),K([3,-6,-4,6,1,-1]),K([-1,-3,1,1,0,0]),K([-15,-43,6,43,0,-8]),K([54,87,-40,-80,7,15])])
 
gp: E = ellinit([Polrev([0,1,0,-4,0,1]),Polrev([3,-6,-4,6,1,-1]),Polrev([-1,-3,1,1,0,0]),Polrev([-15,-43,6,43,0,-8]),Polrev([54,87,-40,-80,7,15])], K);
 
magma: E := EllipticCurve([K![0,1,0,-4,0,1],K![3,-6,-4,6,1,-1],K![-1,-3,1,1,0,0],K![-15,-43,6,43,0,-8],K![54,87,-40,-80,7,15]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+3a)\) = \((a^5-5a^3+4a)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^3-9a)\) = \((a^5-5a^3+4a)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19683 \) = \(-3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -140172878133 a^{5} - 180202777029 a^{4} + 609373044090 a^{3} + 783394877511 a^{2} - 254442862521 a - 327105431919 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - 2 a^{3} - 2 a^{2} + 2 a + 2 : \frac{1}{3} a^{5} + 2 a^{4} - \frac{8}{3} a^{3} - 10 a^{2} + 5 a + 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17366.840569793901029224063427096624151 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 1.71926 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^5-5a^3+4a)\) \(3\) \(1\) \(IV^{*}\) Additive \(1\) \(3\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-g consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.