Properties

Label 6.6.1229312.1-8.1-c3
Base field 6.6.1229312.1
Conductor norm \( 8 \)
CM no
Base change yes
Q-curve no
Torsion order \( 3 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1229312.1

Generator \(a\), with minimal polynomial \( x^{6} - 10 x^{4} + 24 x^{2} - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, 0, 24, 0, -10, 0, 1]))
 
gp: K = nfinit(Polrev([-8, 0, 24, 0, -10, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, 0, 24, 0, -10, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{2}+a-2\right){x}{y}+\left(\frac{1}{2}a^{3}+\frac{1}{2}a^{2}-3a-2\right){y}={x}^{3}+\left(\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-2a^{3}+2a^{2}+2a-2\right){x}^{2}+\left(\frac{19}{4}a^{5}-\frac{17}{4}a^{4}-46a^{3}+37a^{2}+95a-68\right){x}-21a^{5}+\frac{49}{4}a^{4}+199a^{3}-\frac{243}{2}a^{2}-414a+254\)
sage: E = EllipticCurve([K([-2,1,1/2,0,0,0]),K([-2,2,2,-2,-1/4,1/4]),K([-2,-3,1/2,1/2,0,0]),K([-68,95,37,-46,-17/4,19/4]),K([254,-414,-243/2,199,49/4,-21])])
 
gp: E = ellinit([Polrev([-2,1,1/2,0,0,0]),Polrev([-2,2,2,-2,-1/4,1/4]),Polrev([-2,-3,1/2,1/2,0,0]),Polrev([-68,95,37,-46,-17/4,19/4]),Polrev([254,-414,-243/2,199,49/4,-21])], K);
 
magma: E := EllipticCurve([K![-2,1,1/2,0,0,0],K![-2,2,2,-2,-1/4,1/4],K![-2,-3,1/2,1/2,0,0],K![-68,95,37,-46,-17/4,19/4],K![254,-414,-243/2,199,49/4,-21]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/4a^5-2a^3+3a)\) = \((1/4a^5-2a^3+3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(8\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1/4a^5+2a^3-3a)\) = \((1/4a^5-2a^3+3a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 8 \) = \(8\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{753047}{8} a^{5} - 753047 a^{3} + \frac{2259141}{2} a - 574009 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a^{4} + \frac{1}{2} a^{3} - 2 a^{2} - 2 a + 5 : -\frac{1}{4} a^{5} + \frac{3}{4} a^{4} + 2 a^{3} - \frac{13}{2} a^{2} - 2 a + 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 9672.8917555108039030919381529492494567 \)
Tamagawa product: \( 1 \)
Torsion order: \(3\)
Leading coefficient: \( 0.969355 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/4a^5-2a^3+3a)\) \(8\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1
\(7\) 7B.6.1[3]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 7 and 21.
Its isogeny class 8.1-c consists of curves linked by isogenies of degrees dividing 21.

Base change

This elliptic curve is not a \(\Q\)-curve. It is the base change of the following elliptic curve:

Base field Curve
\(\Q(\sqrt{2}) \) 2.2.8.1-98.2-b2