Properties

Label 5.5.89417.1-11.1-a1
Base field 5.5.89417.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.89417.1

Generator \(a\), with minimal polynomial \( x^{5} - 6 x^{3} - x^{2} + 8 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, 8, -1, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, 8, -1, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, 8, -1, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+2\right){x}{y}+a{y}={x}^{3}+\left(-a^{4}+2a^{3}+4a^{2}-7a-4\right){x}^{2}+\left(-291a^{4}+574a^{3}+610a^{2}-923a-458\right){x}+7024a^{4}-13684a^{3}-15498a^{2}+23224a+10852\)
sage: E = EllipticCurve([K([2,0,-4,0,1]),K([-4,-7,4,2,-1]),K([0,1,0,0,0]),K([-458,-923,610,574,-291]),K([10852,23224,-15498,-13684,7024])])
 
gp: E = ellinit([Polrev([2,0,-4,0,1]),Polrev([-4,-7,4,2,-1]),Polrev([0,1,0,0,0]),Polrev([-458,-923,610,574,-291]),Polrev([10852,23224,-15498,-13684,7024])], K);
 
magma: E := EllipticCurve([K![2,0,-4,0,1],K![-4,-7,4,2,-1],K![0,1,0,0,0],K![-458,-923,610,574,-291],K![10852,23224,-15498,-13684,7024]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-3a+2)\) = \((a^3-a^2-3a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^4+4a^3+7a^2-16a-5)\) = \((a^3-a^2-3a+2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -14641 \) = \(-11^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{64801139993982903601201}{14641} a^{4} + \frac{79742135469152888974129}{14641} a^{3} + \frac{290678984684285122184960}{14641} a^{2} - \frac{292899070194533892815349}{14641} a - \frac{157977896987517584455026}{14641} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a + 3 : 17 a^{4} - 35 a^{3} - 33 a^{2} + 56 a + 23 : 1\right)$
Height \(0.20986498322965686577225309587572416071\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(3 a^{4} - \frac{25}{4} a^{3} - \frac{25}{4} a^{2} + \frac{19}{2} a + \frac{31}{4} : -\frac{7}{2} a^{4} + \frac{39}{8} a^{3} + \frac{91}{8} a^{2} - \frac{83}{8} a - \frac{31}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.20986498322965686577225309587572416071 \)
Period: \( 1457.3370136182447877900487661030786913 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.55699535 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-a^2-3a+2)\) \(11\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 11.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.