Properties

Label 5.5.70601.1-53.2-a1
Base field 5.5.70601.1
Conductor norm \( 53 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.70601.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{4}-a^{3}-5a^{2}+3a+2\right){y}={x}^{3}+\left(-a^{4}+a^{3}+4a^{2}\right){x}^{2}+\left(-7a^{4}+3a^{3}+39a^{2}+5a-25\right){x}+9a^{4}-7a^{3}-46a^{2}+8a+25\)
sage: E = EllipticCurve([K([1,1,0,0,0]),K([0,0,4,1,-1]),K([2,3,-5,-1,1]),K([-25,5,39,3,-7]),K([25,8,-46,-7,9])])
 
gp: E = ellinit([Polrev([1,1,0,0,0]),Polrev([0,0,4,1,-1]),Polrev([2,3,-5,-1,1]),Polrev([-25,5,39,3,-7]),Polrev([25,8,-46,-7,9])], K);
 
magma: E := EllipticCurve([K![1,1,0,0,0],K![0,0,4,1,-1],K![2,3,-5,-1,1],K![-25,5,39,3,-7],K![25,8,-46,-7,9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^4-2a^3-9a^2+2a+2)\) = \((2a^4-2a^3-9a^2+2a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 53 \) = \(53\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-2a^3-9a^2+2a+2)\) = \((2a^4-2a^3-9a^2+2a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -53 \) = \(-53\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{9071767}{53} a^{4} + \frac{11769744}{53} a^{3} + \frac{57578323}{53} a^{2} - \frac{6421884}{53} a - \frac{35004004}{53} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(5 a^{4} - 4 a^{3} - 25 a^{2} + 3 a + 13 : 10 a^{4} - 6 a^{3} - 53 a^{2} + 34 : 1\right)$
Height \(0.065935189763161249530014850016313543137\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.065935189763161249530014850016313543137 \)
Period: \( 2675.8687864083911984238249184849370080 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.32006550 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^4-2a^3-9a^2+2a+2)\) \(53\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 53.2-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.