Properties

Label 5.5.195829.1-2.1-b1
Base field 5.5.195829.1
Conductor norm \( 2 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.195829.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 5 x^{3} + 6 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 6, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, 7, 6, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 6, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(-a^{4}+3a^{3}+4a^{2}-9a-4\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(4a^{4}-10a^{3}-19a^{2}+32a+27\right){x}+13a^{4}-30a^{3}-60a^{2}+95a+78\)
sage: E = EllipticCurve([K([-1,-1,1,0,0]),K([2,1,-1,0,0]),K([-4,-9,4,3,-1]),K([27,32,-19,-10,4]),K([78,95,-60,-30,13])])
 
gp: E = ellinit([Polrev([-1,-1,1,0,0]),Polrev([2,1,-1,0,0]),Polrev([-4,-9,4,3,-1]),Polrev([27,32,-19,-10,4]),Polrev([78,95,-60,-30,13])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0,0],K![2,1,-1,0,0],K![-4,-9,4,3,-1],K![27,32,-19,-10,4],K![78,95,-60,-30,13]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-5a^2+7a+5)\) = \((a^4-2a^3-5a^2+7a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2 \) = \(2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3a^4+11a^3+a^2-20a-29)\) = \((a^4-2a^3-5a^2+7a+5)^{24}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -16777216 \) = \(-2^{24}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{140854061737}{16777216} a^{4} + \frac{521974831409}{16777216} a^{3} - \frac{86178293541}{8388608} a^{2} - \frac{34744410679}{1048576} a - \frac{76866520719}{16777216} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{3} - a^{2} - 3 a + 2 : -4 a^{4} + 7 a^{3} + 16 a^{2} - 22 a - 14 : 1\right)$
Height \(0.31108971388969395128795013368176123704\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 2 a^{4} - 5 a^{3} - 9 a^{2} + 16 a + 12 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.31108971388969395128795013368176123704 \)
Period: \( 2223.4146055255491789990943609551893152 \)
Tamagawa product: \( 2 \)
Torsion order: \(3\)
Leading coefficient: \( 1.73670115 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-5a^2+7a+5)\) \(2\) \(2\) \(I_{24}\) Non-split multiplicative \(1\) \(1\) \(24\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 2.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.