Properties

Label 5.5.195829.1-16.2-d2
Base field 5.5.195829.1
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.195829.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 5 x^{3} + 6 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 6, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, 7, 6, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 6, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+3a^{3}+3a^{2}-8a-3\right){x}{y}+\left(-a^{4}+3a^{3}+3a^{2}-9a-2\right){y}={x}^{3}+\left(a^{4}-3a^{3}-3a^{2}+8a+2\right){x}^{2}+\left(-2a^{3}+4a^{2}+2a-5\right){x}+2a^{4}-6a^{3}-5a^{2}+15a+5\)
sage: E = EllipticCurve([K([-3,-8,3,3,-1]),K([2,8,-3,-3,1]),K([-2,-9,3,3,-1]),K([-5,2,4,-2,0]),K([5,15,-5,-6,2])])
 
gp: E = ellinit([Polrev([-3,-8,3,3,-1]),Polrev([2,8,-3,-3,1]),Polrev([-2,-9,3,3,-1]),Polrev([-5,2,4,-2,0]),Polrev([5,15,-5,-6,2])], K);
 
magma: E := EllipticCurve([K![-3,-8,3,3,-1],K![2,8,-3,-3,1],K![-2,-9,3,3,-1],K![-5,2,4,-2,0],K![5,15,-5,-6,2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-1)\) = \((a^4-2a^3-5a^2+7a+5)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^4+8a^3+22a^2-9a-24)\) = \((a^4-2a^3-5a^2+7a+5)^{21}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2097152 \) = \(2^{21}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{28609729}{512} a^{4} + \frac{14983671}{512} a^{3} - \frac{48563491}{256} a^{2} - \frac{4370945}{32} a - \frac{3686985}{512} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + 2 a^{3} + 4 a^{2} - 5 a - 4 : a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1749.8900632765635695802944528716422059 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.97716205 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-5a^2+7a+5)\) \(2\) \(2\) \(I_{13}^{*}\) Additive \(-1\) \(4\) \(21\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 16.2-d consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.