Properties

Label 5.5.195829.1-11.1-d1
Base field 5.5.195829.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.195829.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 5 x^{3} + 6 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 6, -5, -2, 1]))
 
gp: K = nfinit(Polrev([1, 7, 6, -5, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 6, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}+\left(-a^{4}+3a^{3}+3a^{2}-9a-3\right){y}={x}^{3}+\left(a^{3}-a^{2}-4a\right){x}^{2}+\left(-81a^{4}+178a^{3}+376a^{2}-557a-475\right){x}-1268a^{4}+2756a^{3}+5870a^{2}-8623a-7409\)
sage: E = EllipticCurve([K([-1,0,1,0,0]),K([0,-4,-1,1,0]),K([-3,-9,3,3,-1]),K([-475,-557,376,178,-81]),K([-7409,-8623,5870,2756,-1268])])
 
gp: E = ellinit([Polrev([-1,0,1,0,0]),Polrev([0,-4,-1,1,0]),Polrev([-3,-9,3,3,-1]),Polrev([-475,-557,376,178,-81]),Polrev([-7409,-8623,5870,2756,-1268])], K);
 
magma: E := EllipticCurve([K![-1,0,1,0,0],K![0,-4,-1,1,0],K![-3,-9,3,3,-1],K![-475,-557,376,178,-81],K![-7409,-8623,5870,2756,-1268]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-4a^2+6a+2)\) = \((a^4-2a^3-4a^2+6a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6a^4-16a^3-26a^2+58a+39)\) = \((a^4-2a^3-4a^2+6a+2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 161051 \) = \(11^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{106476089}{161051} a^{4} - \frac{198113042}{161051} a^{3} - \frac{361568756}{161051} a^{2} + \frac{44783789}{14641} a + \frac{9814598}{161051} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(21 a^{4} - 46 a^{3} - 97 a^{2} + 144 a + 123 : 213 a^{4} - 462 a^{3} - 985 a^{2} + 1445 a + 1240 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1769.4582863444200590879147921036046284 \)
Tamagawa product: \( 5 \)
Torsion order: \(5\)
Leading coefficient: \( 0.799708701 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-4a^2+6a+2)\) \(11\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 11.1-d consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.