Properties

Label 5.5.186037.1-14.1-a1
Base field 5.5.186037.1
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.186037.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 6 x^{3} + 2 x^{2} + 5 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 5, 2, -6, -1, 1]))
 
gp: K = nfinit(Polrev([-2, 5, 2, -6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 5, 2, -6, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(-10a^{4}+12a^{3}-38a^{2}-47a+25\right){x}+75a^{4}+363a^{3}-268a^{2}-469a+216\)
sage: E = EllipticCurve([K([1,0,0,0,0]),K([-2,4,1,-1,0]),K([1,1,0,0,0]),K([25,-47,-38,12,-10]),K([216,-469,-268,363,75])])
 
gp: E = ellinit([Polrev([1,0,0,0,0]),Polrev([-2,4,1,-1,0]),Polrev([1,1,0,0,0]),Polrev([25,-47,-38,12,-10]),Polrev([216,-469,-268,363,75])], K);
 
magma: E := EllipticCurve([K![1,0,0,0,0],K![-2,4,1,-1,0],K![1,1,0,0,0],K![25,-47,-38,12,-10],K![216,-469,-268,363,75]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-2)\) = \((a^4-a^3-5a^2+2)\cdot(-a^4+a^3+6a^2-a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-66a^4+13a^3+433a^2+162a-304)\) = \((a^4-a^3-5a^2+2)^{6}\cdot(-a^4+a^3+6a^2-a-5)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -368947264 \) = \(-2^{6}\cdot7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{64477514513737305584321773}{368947264} a^{4} + \frac{10699491548325379494199235}{368947264} a^{3} + \frac{98947272401536641312835617}{92236816} a^{2} + \frac{100578124733041654403631191}{184473632} a - \frac{154611480625383330655439525}{368947264} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} - 5 a^{2} - 6 a + \frac{15}{4} : -\frac{1}{2} a^{3} + \frac{5}{2} a^{2} + \frac{5}{2} a - \frac{19}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 180.84705369920124540685061430705478012 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{3}\)
Torsion order: \(2\)
Leading coefficient: \( 1.67714945 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-5a^2+2)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a^4+a^3+6a^2-a-5)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 14.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.