Properties

Label 5.5.181057.1-25.1-a1
Base field 5.5.181057.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.181057.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 4 x^{3} + 7 x^{2} + 2 x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, 2, 7, -4, -2, 1]))
 
gp: K = nfinit(Polrev([-3, 2, 7, -4, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 2, 7, -4, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-5a^{2}-a+3\right){x}{y}+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a^{3}+2a^{2}+2a-2\right){x}^{2}+\left(-5a^{4}+3a^{3}+30a^{2}-7a-24\right){x}-a^{4}+a^{3}+4a^{2}-a+7\)
sage: E = EllipticCurve([K([3,-1,-5,0,1]),K([-2,2,2,-1,0]),K([-1,-1,1,0,0]),K([-24,-7,30,3,-5]),K([7,-1,4,1,-1])])
 
gp: E = ellinit([Polrev([3,-1,-5,0,1]),Polrev([-2,2,2,-1,0]),Polrev([-1,-1,1,0,0]),Polrev([-24,-7,30,3,-5]),Polrev([7,-1,4,1,-1])], K);
 
magma: E := EllipticCurve([K![3,-1,-5,0,1],K![-2,2,2,-1,0],K![-1,-1,1,0,0],K![-24,-7,30,3,-5],K![7,-1,4,1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-3a+4)\) = \((a^3-2a^2-3a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+a+4)\) = \((a^3-2a^2-3a+4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -25 \) = \(-25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{48803087}{5} a^{4} + \frac{185083624}{5} a^{3} - 27082805 a^{2} - \frac{101317246}{5} a + \frac{82622024}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 : 2 a^{4} - a^{3} - 11 a^{2} + 2 a + 10 : 1\right)$
Height \(0.014349913243652449996884116134319860133\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.014349913243652449996884116134319860133 \)
Period: \( 21629.269713221235786299715393757905384 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.64714875 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-2a^2-3a+4)\) \(25\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 25.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.