Properties

Label 5.5.179024.1-8.1-d3
Base field 5.5.179024.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.179024.1

Generator \(a\), with minimal polynomial \( x^{5} - 8 x^{3} + 6 x - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 6, 0, -8, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 6, 0, -8, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 6, 0, -8, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-8a^{2}-6a+6\right){x}{y}+\left(4a^{4}+2a^{3}-31a^{2}-16a+16\right){y}={x}^{3}+\left(-a^{4}+7a^{2}+a-1\right){x}^{2}+\left(-a^{4}+3a^{3}+16a^{2}-5\right){x}+8a^{4}+22a^{3}-6a^{2}-19a+6\)
sage: E = EllipticCurve([K([6,-6,-8,1,1]),K([-1,1,7,0,-1]),K([16,-16,-31,2,4]),K([-5,0,16,3,-1]),K([6,-19,-6,22,8])])
 
gp: E = ellinit([Polrev([6,-6,-8,1,1]),Polrev([-1,1,7,0,-1]),Polrev([16,-16,-31,2,4]),Polrev([-5,0,16,3,-1]),Polrev([6,-19,-6,22,8])], K);
 
magma: E := EllipticCurve([K![6,-6,-8,1,1],K![-1,1,7,0,-1],K![16,-16,-31,2,4],K![-5,0,16,3,-1],K![6,-19,-6,22,8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4-a^3+16a^2+8a-10)\) = \((a)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^4+2a^3-32a^2-16a+20)\) = \((a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -38941424544 a^{4} + 41725215520 a^{3} + 266823419968 a^{2} - 285897744512 a + 72686825472 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} - a^{3} + 16 a^{2} + 9 a - 8 : 2 a^{4} + 2 a^{3} - 13 a^{2} - 9 a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3695.0197605020275713734457691323620361 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.09161916 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.